Auditions CNRS 2023

Concours 06/02 (CRCN)

Batiste Le Bars

Inria Lille

Wednesday, March 22nd, 2023

About me

2011 - 2016 Education in applied mathematics

- Master M1 MAEF (Université Paris 1)
- ► Master M2 MVA (ENS Paris-Saclay)

école — — — — — normale — — — supérieure — — paris — saclay — —

2017 - 2021 PhD in machine learning

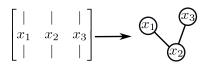
- Centre Borelli (UMR 9010, ENS Paris-Saclay), Sigfox (CIFRE PhD)
- Advisors: Nicolas Vayatis, Argyris Kalogeratos

2021 - now Post-doc

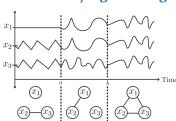
- ► Inria Lille, CRIStAL (UMR 9189)
- ► Working with: Marc Tommasi, Aurélien Bellet, Anne-Marie Kermarrec (EPFL)
- ► Inria-EPFL postdoc fellowship

Statistical Learning with graph-structured data

Static graph learning



Time-varying learning



- ▶ **Objective**: Infer similarity/dependency structure
- ► **Motivation**: Anomaly detection, Change-point detection, Application to Sigfox network
- ▶ **Tools**: Signal processing, Statistical inference, Optimization
- 4 publications (INFOCOM, ICASSP, ICML, JMLR)

Trustworthy Machine Learning

- ► Ethical concerns, new regulations
- Fairness, Privacy, Robustness

Contributions:

- Outlier-robust density estimation (1 paper at ICML 2022)
- Decentralized learning (1 paper at AISTATS 2023)

Trustworthy Machine Learning

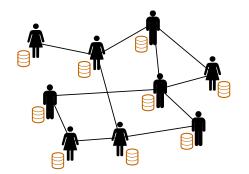
- ► Ethical concerns, new regulations
- Fairness, Privacy, Robustness

Contributions:

- Outlier-robust density estimation (1 paper at ICML 2022)
- ▶ **Decentralized learning** (1 paper at AISTATS 2023)
 - Federated learning
 - Privacy by decentralization

- Decentralized Learning with decentralized data
- Centralization can be costly and implies a risk to privacy
- ► Collaboration is necessary (local datasets can be small or biased)

Fully decentralized FL



Objective: $\min_{\theta} \left[f(\theta) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) \right]$

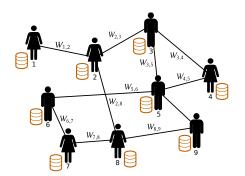
with f_i local loss of agent i

Algorithm: Decentralized SGD with

weighted graph W

- Decentralized Learning with decentralized data
- Centralization can be costly and implies a risk to privacy
- ► Collaboration is necessary (local datasets can be small or biased)

Fully decentralized FL



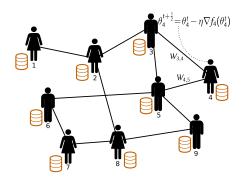
Objective: $\min_{\theta} \left[f(\theta) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) \right]$ with f_i local loss of agent i

Algorithm: Decentralized SGD with

weighted graph W

- Decentralized Learning with decentralized data
- Centralization can be costly and implies a risk to privacy
- ► Collaboration is necessary (local datasets can be small or biased)

Fully decentralized FL



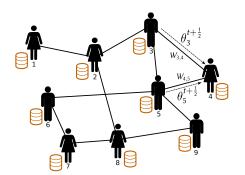
Objective: $\min_{\theta} \left[f(\theta) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) \right]$ with f_i local loss of agent i

Algorithm: Decentralized SGD with

weighted graph W

- Decentralized Learning with decentralized data
- Centralization can be costly and implies a risk to privacy
- ► Collaboration is necessary (local datasets can be small or biased)

Fully decentralized FL

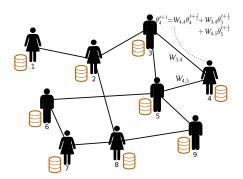


Objective: $\min_{\theta} \left[f(\theta) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) \right]$ with f_i local loss of agent i

Algorithm: Decentralized SGD with weighted graph W

- Decentralized Learning with decentralized data
- Centralization can be costly and implies a risk to privacy
- ► Collaboration is necessary (local datasets can be small or biased)

Fully decentralized FL

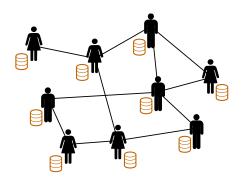


Objective: $\min_{\theta} \left[f(\theta) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) \right]$ with f_i local loss of agent i

Algorithm: Decentralized SGD with weighted graph W

- Decentralized Learning with decentralized data
- Centralization can be costly and implies a risk to privacy
- ► Collaboration is necessary (local datasets can be small or biased)

Fully decentralized FL



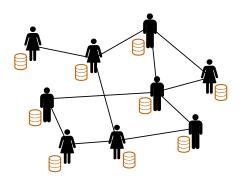
Objective: $\min_{\theta} \left[f(\theta) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) \right]$ with f_i local loss of agent i

Algorithm: Decentralized SGD with weighted graph *W*

Challenges: Data heterogeneity, privacy, robustness, communication cost

- Decentralized Learning with decentralized data
- Centralization can be costly and implies a risk to privacy
- ► Collaboration is necessary (local datasets can be small or biased)

Fully decentralized FL



Objective: $\min_{\theta} \left[f(\theta) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) \right]$ with f_i local loss of agent i

Algorithm: Decentralized SGD with weighted graph *W*

Challenges: Data heterogeneity, privacy, robustness, communication cost

 \rightarrow How to chose the communication graph?

Impact of the communication graph - Overview

Known results

- Convergence is strongly impacted by data heterogeneity
- ▶ W well-connected $\Rightarrow \bigvee$ convergence time \nearrow communication

Impact of the communication graph - Overview

Known results

- Convergence is strongly impacted by data heterogeneity
- ▶ W well-connected $\Rightarrow \bigvee$ convergence time \nearrow communication

Questions

Can the choice of graph mitigate the impact of data heterogeneity?

Impact of the communication graph - Overview

Known results

- ► Convergence is *strongly* impacted by **data heterogeneity**
- ▶ W well-connected $\Rightarrow \bigvee$ convergence time \nearrow communication

Questions

Can the choice of graph mitigate the impact of data heterogeneity?

Contribution

- First work to show that a sparse **graph can compensate the heterogeneity**
- Algorithm that learns a sparse and data-dependent graph

Impact of the communication graph - Overview

Known results

- ► Convergence is *strongly* impacted by **data heterogeneity**
- ▶ W well-connected $\Rightarrow \bigvee$ convergence time \nearrow communication

Questions

Can the choice of graph mitigate the impact of data heterogeneity?

Contribution

- First work to show that a sparse graph can compensate the heterogeneity
- Algorithm that learns a sparse and data-dependent graph
- → A work between decentralized optimization, statistical modeling and graph learning

A bit of technical details

- ► Local heterogeneity: $\frac{1}{n} \sum_{i} \|\nabla f_i(\theta) \nabla f(\theta)\|^2 \le \zeta^2$ (previous work)
- ▶ Neighborhood heterogeneity: $\frac{1}{n} \sum_{i} \| \sum_{j} W_{ij} \nabla f_{j}(\theta) \nabla f(\theta) \|^{2} \le \bar{\tau}^{2}$
 - → impact of the graph *with* the data-heterogeneity

A bit of technical details

- ► Local heterogeneity: $\frac{1}{n} \sum_{i} \|\nabla f_i(\theta) \nabla f(\theta)\|^2 \le \zeta^2$ (previous work)
- ▶ Neighborhood heterogeneity: $\frac{1}{n} \sum_{i} \| \sum_{j} W_{ij} \nabla f_{j}(\theta) \nabla f(\theta) \|^{2} \le \bar{\tau}^{2}$
 - --- impact of the graph with the data-heterogeneity

Theorem (Informal)

The decentralization error reaches a value ε after T iterations with

$$T = \mathcal{O}\left(\frac{\bar{\tau}}{p\varepsilon^{3/2}}\right)$$

and where p is the spectral gap of W.

A bit of technical details

- ► Local heterogeneity: $\frac{1}{n} \sum_{i} \|\nabla f_i(\theta) \nabla f(\theta)\|^2 \le \zeta^2$ (previous work)
- ▶ Neighborhood heterogeneity: $\frac{1}{n} \sum_{i} \| \sum_{j} W_{ij} \nabla f_{j}(\theta) \nabla f(\theta) \|^{2} \leq \bar{\tau}^{2}$
 - --- impact of the graph with the data-heterogeneity

Theorem (Informal)

The decentralization error reaches a value ε after T iterations with

$$T = \mathcal{O}\left(\frac{\bar{\tau}}{p\varepsilon^{3/2}}\right)$$

and where p is the spectral gap of W.

- W impacts the rate through p AND $\bar{\tau}$
- ▶ Sparse W can still make $\bar{\tau}$ small \Rightarrow Learn W by minimizing $\bar{\tau}$

Federated learning: beyond optimization

Objectives

- ► Current FL techniques focus on the optimization of training errors
- In general optimizing the training performance is not enough
 - → models must generalize to unseen data!

Objectives

- Current FL techniques focus on the optimization of training errors
- In general optimizing the training performance is not enough
 → models must generalize to unseen data!
- Optimization is only a step of the learning pipeline:
 - Anomaly detection, missing data imputation
 - Model selection, cross-validation
 - Uncertainty quantification
 - And many more
- ► FL should consider these questions for real-world deployments

Research Axes

Axis 1. Generalization in Federated Learning

Axis 2. Uncertainty Quantification in Federated Learning

 \rightarrow Project at the interface of *statistical learning*, *trustworthy machine learning* and *decentralized optimization*

Axis 1. Generalization in Federated Learning

► $R(\theta) = \mathbb{E}_{Z \sim \mathcal{D}}[\ell(\theta, Z)]$ (population risk)

- $ightharpoonup R(\theta) = \mathbb{E}_{Z \sim \mathcal{D}}[\ell(\theta, Z)]$ (population risk)
- $R_S(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(\theta, Z_i)$ (empirical risk)

- $ightharpoonup R(\theta) = \mathbb{E}_{Z \sim \mathcal{D}}[\ell(\theta, Z)]$ (population risk)
- $ightharpoonup R_S(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(\theta, Z_i)$ (empirical risk)
- $\hat{\theta}_S = \arg\min R_S(\theta)$ (ERM)

- $ightharpoonup R(\theta) = \mathbb{E}_{Z \sim \mathcal{D}}[\ell(\theta, Z)]$ (population risk)
- $ightharpoonup R_S(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(\theta, Z_i)$ (empirical risk)
- $\hat{\theta}_S = \arg\min R_S(\theta)$ (ERM)
- $ightharpoonup A(S), S = \{Z_i\}_{i=1}^n$ (Iterative algorithm)

- $ightharpoonup R(\theta) = \mathbb{E}_{Z \sim \mathcal{D}}[\ell(\theta, Z)]$ (population risk)
- $ightharpoonup R_S(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(\theta, Z_i)$ (empirical risk)
- $\hat{\theta}_S = \arg\min R_S(\theta)$ (ERM)
- $ightharpoonup A(S), S = \{Z_i\}_{i=1}^n$ (Iterative algorithm)

$$R(A(S)) - R(\theta^*) \leq \underbrace{R(A(S)) - R_S(A(S))}_{Generalization} + \underbrace{R_S(A(S)) - R_S(\hat{\theta}_S)}_{Optimization}$$

Axis 1. Generalization in Federated Learning

Short/mid-term objectives (1-3 years)

- ► Reveal the **impact of decentralization on generalization**: communication graph, data heterogeneity, asynchronous communication
 - → using stability analysis, Information-Theoretic generalization bounds
- ▶ **Algorithmic developments**: improve generalization performance

Mid-long-term objectives (3-5 years)

- Better generalization with personalized models
- Propose unified framework for consensus vs personalized
- Contribution to generalization analysis for ML in general

Axis 1. Generalization in Federated Learning

Axis 2. Uncertainty Quantification in Federated Learning

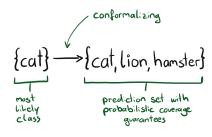
Axis 2. Uncertainty Quantification in Federated Learning

Measuring data-heterogeneity

- ▶ Heterogeneity has a strong impact on optimization; and generalization?
- Motivation: data-analysis, model selection, hyperparameter tuning

Uncertainty in the prediction

- Strong variance in the prediction
- Scalar prediction are not sufficiently conservative
 → predict intervals
- Conformal prediction in FL



Integration project

UMR 7243 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE)

- ► MILES team (head: Jamal Atif)
- Trustworthy ML (Privacy and robustness)
- Optimization, high-dimensional learning

UMR 9189 Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL)

- ► MAGNET team (head: Marc Tommasi)
- Trustworthy ML (Fairness, Privacy, Federated Learning)

List of publications

- **B. Le Bars**, A. Bellet, M. Tommasi, E. Lavoie, A-M. Kermarrec. *Refined convergence and topology learning for decentralized sgd with heterogeneous data*. AISTATS, 2023.
- P. Humbert*, **B. Le Bars***, L. Minvielle. *Robust kernel density estimation with median-of-means principle*. ICML,2022.
- P. Humbert*, **B. Le Bars***, L. Oudre, A. Kalogeratos, N. Vayatis. *Learning laplacian matrix from graph signals with sparse spectral representation*. JMLR, 2021.
- **B. Le Bars**, P. Humbert, A. Kalogeratos, N. Vayatis. *Learning the piece-wise constant graph structure of a varying ising model*. ICML 2020.
- **B. Le Bars***, P. Humbert*, L. Oudre, A. Kalogeratos. *Learning laplacian matrix from bandlimited graph signals*. ICASSP 2019.
- B. Le Bars, A. Kalogeratos. A probabilistic framework to node-level anomaly detection in communication networks. INFOCOM 2019.

STL-FW - Objective

Proposition

 $\exists \lambda > 0$ s.t. neighborhood heterogeneity *H* is upper bounded by

$$H \leq g(W) \triangleq \frac{1}{n} \left\| W \Pi - \frac{\mathbf{1} \mathbf{1}^{\mathsf{T}}}{n} \Pi \right\|_{F}^{2} + \frac{\lambda}{n} \left\| W - \frac{\mathbf{1} \mathbf{1}^{\mathsf{T}}}{n} \right\|_{F}^{2}$$

Objective: Minimize g(W) s.t. W doubly stochastic

- Avoid trivial (dense) solution $W = \frac{1}{n} \mathbf{1} \mathbf{1}^{\mathsf{T}}$
- Find W sparse instead: using Frank-Wolfe!

STL-FW - Results

