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Introduction Network anomaly detection Graph Learning Temporal Ising Conclusion

Industrial context

What is Sigfox?
I Internet-of-Things network

I 28k Base Stations (BS)

I A message can be received by all nearby BS

I ∼ 56M messages/day

I 72 countries

Objective
Detect BS failure using the data collected in the

network

Which data?
I Only reception information
I For each message, which BS received it (1) or

not (0)

BS#1 BS#2 BS#3 . . .
Message #1 0 1 1 . . .
Message #2 1 0 0 . . .
Message #3 0 0 1 . . .

. . . . . . . . . . . . . . .

I “Pure” data: almost no processing
I Collected at the level of nodes in a network:

Graph vectors!
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General context

Graph vectors
I Let G = (V, E) be a graph, y : V → R is a

graph vector
I Also referred as graph signals or graph data
I Examples: Sigfox data, Social network data, EEG

etc.

Problems
I Graph known:
→ improve the performance of your
learning/statistical tasks

I Graph unknown:
→ learn it to be�er understand the data

Figure: Electroencephalogram (EEG) seen as a set of graph data
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Objectives and motivations

Event detection for graph vectors
I Anomaly or Change-point detection
I Motivated by Sigfox application (BS failure)
I Applications: network security, sensor’s breakdown, etc.

Graph learning
I Infer the relationship between variables (similarity,

dependency, etc.)
I Visualize and model the vectors. Apply graph-based

learning algorithms
I Applications: gene co-expression, movie

recommendation, etc.

Detect changes in the underlying graph
I Combination of graph learning and change-point

detection
I More di�icult
I Keeps the advantages of the previous tasks

Normal data

Anomalies

Clusters



3/26

Introduction Network anomaly detection Graph Learning Temporal Ising Conclusion

Objectives and motivations

Event detection for graph vectors
I Anomaly or Change-point detection
I Motivated by Sigfox application (BS failure)
I Applications: network security, sensor’s breakdown, etc.

Graph learning
I Infer the relationship between variables (similarity,

dependency, etc.)
I Visualize and model the vectors. Apply graph-based

learning algorithms
I Applications: gene co-expression, movie

recommendation, etc.

Detect changes in the underlying graph
I Combination of graph learning and change-point

detection
I More di�icult
I Keeps the advantages of the previous tasks

Normal data

Anomalies

Clusters



3/26

Introduction Network anomaly detection Graph Learning Temporal Ising Conclusion

Objectives and motivations

Event detection for graph vectors
I Anomaly or Change-point detection
I Motivated by Sigfox application (BS failure)
I Applications: network security, sensor’s breakdown, etc.

Graph learning
I Infer the relationship between variables (similarity,

dependency, etc.)
I Visualize and model the vectors. Apply graph-based

learning algorithms
I Applications: gene co-expression, movie

recommendation, etc.

Detect changes in the underlying graph
I Combination of graph learning and change-point

detection
I More di�icult
I Keeps the advantages of the previous tasks

Normal data

Anomalies

Clusters



4/26

Introduction Network anomaly detection Graph Learning Temporal Ising Conclusion

Related works

Event detection for graph vectors
I Use the graph to build features (Chen et al. 2018 [3], Egilmez et al. 2014 [6])
I Di�erent levels of detection
→ node-level (Ji et al. 2013 [11]), subgraph-level (Neil et al. 2013 [15]), graph-level (Chen et al. 2018 [3])

Graph learning
I Statistical framework: estimating parameters of Markov Random Fields
→ Gaussian model (Friedman et al. 2008 [7]), Ising model (Ravikumar et al. 2010 [16], Goel et al. 2019 [9])

I Graph signal processing framework
→ Smoothness (Dong et al. 2016 [5]), sparsity of the graph spectral domain (Sardelli�i et al. 2019 [18])

Detect changes in the underlying graph
I Statistical framework (Roy et al. 2017 [17], Londschien et al. 2020 [17] [14])
I Graph signal processing framework (Yamada et al. 2020 [20])
I Known (Bybee and Atchadé, 2018 [1]) vs Unknown (Gibberd and Nelson, 2017 [8]) number of change-points
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Outline

1. Node-level anomaly detection in networks: application to Sigfox

2. Graph inference from smooth and bandlimited graph signals

3. Detecting changes in the graph structure of a varying Ising model

4. Conclusion



Introduction Network anomaly detection Graph Learning Temporal Ising Conclusion
Model Objective Solution Application

Part 1
-

Node-level anomaly detection in networks:
application to Sigfox
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Model

I Let N be the number of considered BS

Definition (Fingerprint)

The fingerprint of a Sigfox message is X = (X1, . . . , XN ) ∈ {0, 1}N , where Xj = 1 if BS j received the
message, 0 otherwise

I Assumption 1: Sigfox messages are independent random vectors

Definition (Conditional probability function)

Let a BS j ∈ [N], The conditional probability function of j is

η∗j (x j) , P(Xj = 1|X j = x j),

where X j is the vector X without its j-th component

I Assumption 2: The conditional probability function of a BS j doesn’t change over time
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Objective and scoring function

Goal: Given a setDn = {X (i)}n
i=1 and its realization {x(i)}n

i=1, fix a BS j ∈ [N] and determine if mj =
∑n

i=1 x(i)
j

is abnormally low
I Assumption 3: We have access to a set of normal communication behaviors Dtrain

A natural scoring function
I Use values of the other BS
I Knowing X (i)

j = x(i)
j , Mj =

∑n
i=1 X (i)

j is a Poisson Binomial distribution with parameter {η∗j (x(i)
j )}n

i=1

I Given η∗j , its cumulative distribution function (cdf) FMj (·) can be computed e�iciently (Hong, 2013 [10])

Definition (Anomaly scoring function)

A natural score of abnormality for mj is given by:

s(mj) = P(Mj > mj) = 1− FMj (mj),

where close to 1 value means mj stands in a low-density region (le�-hand tail).

I In practice we do not have access to η∗j . What can be done?
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A supervised-learning solution

Solution

I Learn η̂j , estimator of η∗j , using a regression
algorithm (logistic, random forest, etc.) over
Dtrain

I Use η̂j instead of η∗j to build FMj , and compute
the previous anomaly score

I Fix a threshold above which mj is considered
abnormal (e.g. 0.99 or 0.95)

Algorithm: Regression-based anomaly
detection

Input: Dtrain, Dn, node j, threshold s
Regression algorithm: Regressor(·)
Output: 1 if anomaly, 0, otherwise

η̂ ←− Regressor
(
Dtrain = {x̃(i)

j , x̃
(i)
j }
)

for i = 1 . . . , n do
p̂i ←− η̂(x(i)

j )

end for
F̂ ←−PoiBin

(∑
x(i)

j ; p̂(1)
j , . . . , p̂(n)

j

)
ŝ ←− max(F̂ , 1− F̂ )
if ŝ > s then

Output 1: Abnormal node
else

Output 0: Normal node
end if
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Sigfox application

Dataset
I 34 BS, 232000 messages over 5 months

I Training set: first month(∼ 35000 messages)

I Daily prediction over the 4 other months: 120
testing data sets (∼ 1600 messages/day in
average)

I 1 failing BS, approximately from March, i.e. 30
normal days, 90 abnormal

I Dataset available online

Setup
I Regressor: Random forest from scikit-learn, by

default hyperparameters (no tuning)

I Threshold fixed via CV over the training set s.t.
False positive rate ∼ 0.01

I Baseline: basic feature engineering + One-class
SVM (Schölkopf et al. 2001 [19])
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Results
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Results (2)

Figure: ROC curves and their respective AUC.

I Convincing results: the proposed approach seems adapted
I Larger-scale experiments, performed internally at Sigfox, corroborate those results
I A more general presentation of the method in [Le Bars and Kalogeratos, INFOCOM 2019]
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Part 2
-

Graph inference from smooth and bandlimited
graph signals
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Background

Graph Signal Processing (GSP)
I Generalizes signal processing concepts for graph signals (smoothness, Fourier transform, sampling,

filtering, etc.)
I Temporal signals and images are graph signals with specific graph (cycles and grid)
I Having access to the graph is a strong assumption: graph learning

Definition (Graph Laplacian)

The graph Laplacian of a graph G = (V, E) with
weight matrix W and degree matrix D is the matrix
L = D −W

Definition (Graph Fourier Transform)

Let G = (V, E) and L = XΛXT be the eigenvalue
decomposition of its Laplacian matrix. The Graph
Fourier Transform (GFT) of a graph signal y ∈ Rp

is given by
h = XTy
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Problem Statement

Goal: Learn the Laplacian L that best explains the structure of n graph signals Y = [y(1), . . . , y(n)] of size N .
I Need for structural assumptions that link L to Y

Assumptions:
I G is undirected and has a single connected component
I The graph signals are smooth with respect to G i.e. y(i)TLy(i) = 1

2

∑
wkl(y(i)

k − y(i)
l )2 is small

I They have a bandlimited spectrum i.e. ∀i, h(i) = XTy(i) has some zero-valued coe�icients at same
dimensions
→ Basic assumption of sampling methods (Chen et al. 2015 [2])
→ Di�erent notion of smoothness
→ Also relies to the cluster structure of the graph (Sardelli�i et al. 2019 [18])

(a) (b) (c)

Figure: Three smooth graph signals (N = 300) with decreasing bandlimitedness: (a) 150-sparse, (b) 6-sparse, (c) 3-sparse.
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Optimization program

min
H,X,Λ
‖Y − XH‖2

F + α‖Λ1/2H‖2
F + β‖H‖S

s.t.


XTX = IN , x1 = 1√

N
1N (a)

(XΛXT)k,` ≤ 0 k 6= ` (b)
Λ = diag(0, λ2, . . . , λN ) � 0 (c)
tr(Λ) = N ∈ R+

∗ (d)

I Learn XΛXT instead of L

I Y are assumed to be noisy version of some true graph vectors XH

I H stands for the graph Fourier transform of the true graph vectors
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I (d) makes sure the graph has edges
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Optimization program

min
H,X,Λ
‖Y − XH‖2

F + α‖Λ1/2H‖2
F + β‖H‖S

s.t.
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tr(Λ) = N ∈ R+

∗ (d)

I ‖Y − XH‖2
F stands for the reconstruction error

I ‖Λ1/2H‖2
F controls the smoothness of the approximation XH

I ‖H‖S = ‖H‖2,0 or ‖H‖2,1 enforces the GFT to be 0 at the same dimensions

I α and β are positive hyperparameters that controls smoothness and bandlimitedness

I (a), (b) and (c) ensure XΛXT to be a Laplacian

I (d) makes sure the graph has edges



15/26

Introduction Network anomaly detection Graph Learning Temporal Ising Conclusion
Background Problem Statement Optimization Experiments

Solving the program (overview)

I Optimization program not convex + very di�icult to updates all variables directly
−→ Use block-coordinate descent

I Other problem: constraint (b) (XΛXT)kl ≤ 0 di�icult to handle at the X -step
−→ Solution: IGL-3SR and FGL-3SR [Le Bars et al., ICASSP 2019, Humbert et al., JMLR 2021]

I Both relax (b) and use block-coordinate descent over X , Λ and H

min
H,X,Λ
‖Y − XH‖2

F + α‖Λ1/2H‖2
F + β‖H‖S

s.t.


XTX = IN , x1 = 1√

N
1N (a)

(XΛXT)k,` ≤ 0 k 6= ` (b)
Λ = diag(0, λ2, . . . , λN ) � 0 (c)
tr(Λ) = N ∈ R+

∗ (d)
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Solving the program (overview)

I Optimization program not convex + very di�icult to updates all variables directly
−→ Use block-coordinate descent

I Other problem: constraint (b) (XΛXT)kl ≤ 0 di�icult to handle at the X -step
−→ Solution: IGL-3SR and FGL-3SR [Le Bars et al., ICASSP 2019, Humbert et al. JMLR 2021]

I Both relax (b) and use block-coordinate descent over X , Λ and H

IGL-3SR
Relaxation: use a log-barrier function to put (b) in the
objective

+ Each sub-problem is solvable using known techniques
+ Decrease at each step and stays in the constraint set
+ Iterates are ensured to converge
- High complexity

FGL-3SR
Relaxation: get rid of (b), only at the X -step

+ Lower complexity
+ 2/3 steps has closed-form
+ Returns a Laplacian even with the relax-
ation
- Objective function value can increase
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Synthetic data

I Large simulation study in [Le Bars et al., ICASSP 2019, Humbert et al., JMLR 2021]

I True graphs: Random Geometric or Erdös-Renyi

I Y sampled via factor analysis model

I Comparison with two GSP baselines:
→ GL-SigRep (Dong et al. 2016 [5]): Only smoothness
→ ESA-GL (Sardelli�i et al. 2019 [18]): Bandlimitedness

Results and conclusion
I IGL-3SR outperforms baselines and FGL-3SR in terms of true graph recovery

I It is very slow, not practical for & 20 nodes

I FGL-3SR is a good compromise between graph recovery and time before convergence
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Synthetic data - Results
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A real-world illustration

I Temperature data in Bri�any (Chepuri et al.
2017 [4])

I N = 32 weather station
I spectral clustering to ascess the quality

I n = 744 measurements
I α = 10−4, β s.t 2-bandlimited

(a) A measurement example and the learned graph. (b) Spectral clustering with the learned graph.

I Coherent with the spatial distribution. Splits the north from the south of Bri�any
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Part 3
-

Detecting changes in the graph structure of a
varying Ising model
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Background

Context
I Probabilistic modeling, the data come from a Markov Random Field (MRF)
I Binary vector data: Ising model
I Change-point detection with unknown number of change-points
I Related works:

– Detection in Gaussian graphical models (Gibberd and Nelson, 2017 [8])
– Detection in Ising with known number of change-points (Roy et al. 2017 [17])

Ising model

Let G = (V , E) and Ω ∈ Rp×p symmetric whose non-zero elements correspond to the set of edges E . The
probability distribution function (pdf) of an Ising random vector X :

PΩ(X = x) =
1

Z(Ω)
exp

∑
a<b

xaxbωab


I Z(Ω) : Normalizing constant
I x ∈ {−1, 1}p
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Model and objectives

Piece-wise constant Ising model

I Time-series of n independent Ising vectors X (i) with parameter Ω(i)

I Piecewise constant evolving structure:

Ω(i) =
D∑

k=0

Θ(k+1)1{Tk ≤ i < Tk+1}

T0 = 1 and TD+1 = n + 1.
I D change-points appearing a time T1, . . . , TD

I D + 1 sub-model parametrized by Θ(1), . . . ,Θ(D+1)

Objectives:
I Learn for each X (i) its associated parameter Ω(i)

I Infer the number of change-points D and their time instances
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Learning

I Can we use standard maximum likelihood approach ?
→ No, due to the intractability of Z(·) and the high-dimensional scenario

I Instead, penalized neighborhood selection strategy: TVI-FL [Le Bars et al., ICML 2020]

TVI-FL
For each node j = 1, . . . , p, we solve

ω̂j = argmin
ω∈Rp−1×n

Lj(ω) +penλ1,λ2 (ω)

I A column ω̂(i)
j of ω̂j corresponds to the j-th row/column of Ω̂(i)

−→ The neighborhood’s weights of node j at time i
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Learning

TVI-FL
For each node j = 1, . . . , p, we solve

ω̂j = argmin
ω∈Rp−1×n

Lj(ω) +penλ1,λ2 (ω)

Lj(ω) , −
n∑

i=1

log
(
Pω(i) (x(i)

j |x
(i)
j )
)

=
n∑

i=1

log
{

exp
(
ω(i)>x(i)

j

)
+ exp

(
−ω(i)>x(i)

j

)}
−

n∑
i=1

x(i)
j ω(i)>x(i)

j

I Conditional log-likelihood of node j knowing the other nodes values

I Convex function
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Learning

TVI-FL
For each node j = 1, . . . , p, we solve

ω̂j = argmin
ω∈Rp−1×n

Lj(ω) +penλ1,λ2 (ω)

penλ1,λ2 (ω) , λ1

n∑
i=2

‖ω(i) − ω(i−1)‖2 + λ2

n∑
i=1

‖ω(i)‖1

I λ1 and λ2 are positive hyperparameters
I The first term - fused penalty - controls the piece-wise constant structure and the number of

change-points
I The second term - lasso penalty - imposes sparsity in the learnt neighborhood

In conclusion:
I Non-di�erentiable but convex function
I TVI-FL solvable by convex programming tools and so�ware

I Set of estimated change-points : D̂ =
{

T̂k ∈ {2, . . . , n} : ‖ω̂(T̂k )
j − ω̂(T̂k−1)

j ‖2 6= 0
}
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Theoretical analysis

Assumptions:

I (A1) ∃φmin > 0 and φmax <∞ s.t. φmin ≤ Λmin

(
EΘ(k) [X jX>j ]

)
and φmax ≥ Λmax

(
EΘ(k) [X jX>j ]

)
I (A2) There exists M ≥ 0 s.t. maxk∈[D+1]‖θ

(k)
j ‖2 ≤ M

I (A3) For all k = 1, . . . ,D, Tk = bnτkc with unknown τk ∈ [0, 1]

Theorem - Change-Point consistency

Consider (A1-A3) and let {δn}n≥1 be a non-increasing sequence that converges to 0 and s.t. nδn →∞.
If D̂ = D, we have:

P( max
k=1,...,D

|T̂k − Tk | ≤ nδn) −→
n→∞

1

I Drawback: D̂ = D di�icult to verify
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Change-Point consistency 2

I d(A‖B) = supb∈B infa∈A |b − a|

Proposition

Under the same conditions, if D ≤ D̂ then:

P(d(D̂‖D) ≤ nδn) −→
n→∞

1

I Overestimated number of change-points

I Asymptotically, all the true change-points belong to the estimated set of change-points
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Voting data set

I Votes (yes/no) in Illinois house of
representatives (Lewis et al. 2020 [13])

I 18 seats→ 18 nodes
I 1264 votes
I 114-th and 115-th US Congresses

(2015-2019)
I λ1 and λ2 minimizing AIC

Results:
I Party structure: Republican vs Democrat
I Biggest change-point: End of congress
I Seat 10 change party
I Brings knowledge: seat 10 is a

super-collaborator
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Conclusion

A diverse work ...
I Anomaly detection, change-point detection, graph learning, optimization
I GSP framework, probabilistic framework
I Not discussed: robust kernel density estimation [Le Bars et al., 2020]
I Codes available online at github.com/BatisteLB

... with open questions
I Online version for change-point detection of part 3
I Be�er theoretical understanding: consistent graph recovery?
I Improve optimization of part 2 and 3
I Make a be�er use of the graph in part 1
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What about my postdoc?

Fully decentralized federated learning

I Decentralized algorithms depend on a graph topology
→ also impacts the convergence!

I Impact increases when data are non iid
I Objective: learning data-dependent graphs that can speed-up convergence

Learning with privacy

I Learning graphs under privacy constraints
I Privately learning the graph proposed above
I Markov Random Fields inference under (local) di�erential privacy
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Publications and preprints

I B. Le Bars, and A. Kalogeratos. A Probabilistic Framework to Node-level Anomaly Detection in
Communication Networks. In 2019 IEEE Conference on Computer Communications (INFOCOM), 2019

I B. Le Bars, P. Humbert, L. Oudre, and A. Kalogeratos. Learning Laplacian Matrix from Bandlimited Graph
Signals. In 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019

I B. Le Bars, P. Humbert, A. Kalogeratos, and N. Vayatis. Learning the piece-wise constant graph structure of
a varying Ising model. In 2020 International Conference on Machine Learning (ICML), 2020

I B. Le Bars, P. Humbert, L. Minvielle, and N. Vayatis. Robust Kernel Density Estimation with
Median-of-Means principle. Arxiv preprint, 2020

I P. Humbert, B. Le Bars, L. Oudre, A. Kalogeratos, and N. Vayatis. Learning Laplacian Matrix from Graph
Signals with Sparse Spectral Representation. In Journal of Machine Learning Research (JMLR), 2021
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Results bilateral
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FGL-3SR

H-step

min
H
‖Y − XH‖2

F + α‖Λ1/2H‖2
F +β‖H‖S

I No constraint
I Equivalent to multiple sparse linear regression problems
I Closed-form solutions
I ‖·‖S = ‖·‖2,0: hard-thresholding
I ‖·‖S = ‖·‖2,1: solf-thresholding
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FGL-3SR

X -step

min
X
‖Y − XH‖2

F s.t. XTX = IN , x1 =
1
√

N
1N (a)

I (b) is out
I Non-convex but has a closed-form:

X (t+1) = X (t)
[

1 0T
N−1

0N−1 PQT

]
,

where the columns in P and Q are the le�- and right-singular vectors of (X (t+1)TYHT)2:,2:
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FGL-3SR

Λ-step

min
Λ

α tr(HHTΛ)︸ ︷︷ ︸
‖Λ1/2H‖2

F

s.t.


(XΛXT)i,j ≤ 0 i 6= j , (b)
Λ = diag(0, λ2, . . . , λN ) � 0 , (c)
tr(Λ) = N ∈ R+

∗ , (d)

I (b) is back
I Linear program: can be solved via solvers
I Property: for all X that satisfies (a), there exist Λ that satisfies (b), (c) and (d)
−→ Need to finish by this step
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Synthetic data graph learning - Results

RG graph model ER graph model
N Metrics IGL-3SR FGL-3SR ESA-GL GL-SigRep IGL-3SR FGL-3SR ESA-GL GL-SigRep

20

F1-measure 0.97 (±0.03) 0.97 (±0.03) 0.93 (±0.03) 0.95 (±0.04) 0.94 (±0.03) 0.82 (±0.07) 0.94 (±0.04) 0.78 (±0.07)

ρ(L, L̂) 0.94 (±0.05) 0.90 (±0.03) 0.92 (±0.05) 0.79 (±0.04) 0.92 (±0.03) 0.73 (±0.06) 0.90 (±0.04) 0.20 (±0.07)

Time < 1min < 10s < 5s < 5s < 1min < 10s < 5s < 5s

50

F1-measure 0.90 (±0.01) 0.81 (±0.02) 0.87 (±0.04) 0.75 (±0.01) 0.81 (±0.02) 0.76 (±0.03) 0.84 (±0.02) 0.61 (±0.03)

ρ(L, L̂) 0.86 (±0.02) 0.74 (±0.03) 0.83 (±0.03) 0.55 (±0.02) 0.78 (±0.03) 0.73 (±0.02) 0.82 (±0.06) 0.06 (±0.01)

Time < 17mins < 40s < 60s < 40s < 17mins < 40s < 60s < 40s

100

F1-measure 0.73 (±0.03) 0.64 (±0.01) 0.70 (±0.01) – 0.62 (±0.01) 0.59 (±0.02) 0.59 (±0.02) –

ρ(L, L̂) 0.61 (±0.04) 0.48 (±0.01) 0.60 (±0.03) – 0.55 (±0.02) 0.51 (±0.022) 0.64 (±0.02) –

Time < 50mins < 2mins < 4mins – < 50mins < 2mins < 4mins –
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Synthetic data

I n = 100, p = 20, 2 Change-Points
I Random Regular Graphs with degree ∈ {2, 3, 4}
I Competitor: Tesla (Kolar et al. [12])
I Metrics, F1-score and h-score:

h(D, D̂) ,
1
n

max

{
max
t∈D

min
t̂∈D̂
|t − t̂|, max

t̂∈D̂
min
t∈D
|t − t̂|

}
.

degree = 2 degree = 3 degree = 4
0.0

0.2

0.4

0.6

0.8

1.0

F 1
-s

co
re

h-score = 0.0
TVI-FL
Tesla

degree = 2 degree = 3 degree = 4
0.0

0.2

0.4

0.6

0.8

1.0

F 1
-s

co
re

h-score ≤ 0.03
TVI-FL
Tesla

Figure: Average F1-score obtained when the h-score is below a certain threshold.

I Outperforming Telsa, not designed for proper CP detection
I Complete results in the main paper
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Sigfox data set TVI-FL

I Same data set as in part 1
I λ1 and λ2 selected via AIC
I Several change-points, but an important one around the 30th day

Figure: (Le�) A graph learned before the BS failure, recorded on the 30th day. (Right) A graph learned a�er this day
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Robust Kernel Density Estimator

Classical framework

I {X1, . . . , Xn}
I ∀i = 1, . . . , n, Xi ∼ f
I Kernel Density Estimator (KDE):

f̂n(x) =
1

nhd

n∑
i=1

K
(

Xi − x

h

)

Outlier framework

I {X1, . . . , Xn} = O ∪ I
I ∀i ∈ I , Xi ∼ f
I B1, . . . ,BS : random partition of [n]

I ns = |Bs|
I Median-of-Means KDE:

f̂MoM(x0) ∝ Median
(

f̂n1 (x0), . . . , f̂nS (x0)
)
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Robust Kernel Density Estimator

(a) One-dimensional

(b) Two-dimensional
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