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Industrial context

What is Sigfox?

> Internet-of-Things network
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Industrial context

What is Sigfox? Objective
> Internet-of-Things network Detect BS failure using the data collected in the
network

» 28k Base Stations (BS)
Which data?

> Only reception information

B

> For each message, which BS received it (1) or

©)
A g not (0)
ﬁ F i BS#1 BS#2 BS#3

&=l Message #1 0 1 1
Objects Sigfox Stations Sigfox Cloud” Message #2 1 0 0
Message #3 0 0 1

B

> A message can be received by all nearby BS
> “Pure” data: almost no processing

P> ~ 56M messages/da
& Y P Collected at the level of nodes in a network:

> 72 countries Graph vectors!
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General context

Graph vectors

> Let G=(V,€)beagraph,y: V — Risa
graph vector

> Also referred as graph signals or graph data

> Examples: Sigfox data, Social network data, EEG
etc.
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General context

Graph vectors Problems

> Let G=(V,€)beagraph,y: V — Risa » Graph known:
graph vector — improve the performance of your

> Also referred as graph signals or graph data learning/statistical tasks

» Graph unknown:

> Examples: Sigfox data, Social network data, EEG
— learn it to better understand the data

etc.

184 1186 188 1190 1192 194 196 1198 1200
Time (s)

Figure: Electroencephalogram (EEG) seen as a set of graph data
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Introduction

Objectives and motivations

Event detection for graph vectors
> Anomaly or Change-point detection
> Motivated by Sigfox application (BS failure) X2

> Applications: network security, sensor’s breakdown, etc.
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Objectives and motivations

Event detection for graph vectors
> Anomaly or Change-point detection
> Motivated by Sigfox application (BS failure)
> Applications: network security, sensor’s breakdown, etc.

Graph learning

Temporal Ising

> Infer the relationship between variables (similarity,
dependency, etc.)

P Visualize and model the vectors. Apply graph-based
learning algorithms

> Applications: gene co-expression, movie
recommendation, etc.

Detect changes in the underlying graph

> Combination of graph learning and change-point
detection

> More difficult

Concl

> Keeps the advantages of the previous tasks

s
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Related works

Event detection for graph vectors
> Use the graph to build features (Chen et al. 2018 [3], Egilmez et al. 2014 [6])

> Different levels of detection
— node-level (Ji et al. 2013 [11]), subgraph-level (Neil et al. 2013 [15]), graph-level (Chen et al. 2018 [3])
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Related works

Event detection for graph vectors
> Use the graph to build features (Chen et al. 2018 [3], Egilmez et al. 2014 [6])

> Different levels of detection
— node-level (Ji et al. 2013 [11]), subgraph-level (Neil et al. 2013 [15]), graph-level (Chen et al. 2018 [3])

Graph learning

> Statistical framework: estimating parameters of Markov Random Fields
— Gaussian model (Friedman et al. 2008 [7]), Ising model (Ravikumar et al. 2010 [16], Goel et al. 2019 [9])

> Graph signal processing framework
— Smoothness (Dong et al. 2016 [5]), sparsity of the graph spectral domain (Sardellitti et al. 2019 [18])

Detect changes in the underlying graph
> Statistical framework (Roy et al. 2017 [17], Londschien et al. 2020 [17] [14])
» Graph signal processing framework (Yamada et al. 2020 [20])
> Known (Bybee and Atchadé, 2018 [1]) vs Unknown (Gibberd and Nelson, 2017 [8]) number of change-points
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Introduction

Outline

1. Node-level anomaly detection in networks: application to Sigfox
2. Graph inference from smooth and bandlimited graph signals
3. Detecting changes in the graph structure of a varying Ising model

4. Conclusion



Network anomaly detection

Part 1

Node-level anomaly detection in networks:
application to Sigfox



Network anomaly detection
Model

Model

» Let N be the number of considered BS

Definition (Fingerprint)

The fingerprint of a Sigfox message is X = (Xi,...,Xy) € {0,1}", where X; = 1if BS j received the
message, 0 otherwise

> Assumption 1: Sigfox messages are independent random vectors
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Network anomaly detection
Model

Model

» Let N be the number of considered BS

Definition (Fingerprint)

The fingerprint of a Sigfox message is X = (Xi,...,Xy) € {0,1}", where X; = 1if BS j received the
message, 0 otherwise

> Assumption 1: Sigfox messages are independent random vectors

Definition (Conditional probability function)

Let a BS j € [N], The conditional probability function of j is
77 (xy) £ P0G = 11X = xy),

where X\; is the vector X without its j-th component

> Assumption 2: The conditional probability function of a BS j doesn’t change over time
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Model Objective Solution Application

Objective and scoring function

Goal: Given a set D, = {X(0}7_ and its realization {x()}7_, fix a BS j € [N] and determine if m; = 3°7_, xj(i)
is abnormally low

> Assumption 3: We have access to a set of normal communication behaviors Dygin
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Network anomaly detection
Objective

Objective and scoring function

n

Goal: Given a set D, = {X(0}7_ and its realization {x()}7_, fix a BS j € [N] and determine if m; = 3°7_, xj(i)
is abnormally low

> Assumption 3: We have access to a set of normal communication behaviors Dygin

A natural scoring function
> Use values of the other BS
> Knowing X\(ji) = x\(;), Mp=31, Xj(i) is a Poisson Binomial distribution with parameter {771?‘ (x\(;))}le

» Given 17]?‘, its cumulative distribution function (cdf) FM,-(') can be computed efficiently (Hong, 2013 [10])

Definition (Anomaly scoring function)

A natural score of abnormality for m; is given by:
s(m,) = ]P(Mj > mj) =1—- FMj(mj),

where close to 1 value means m; stands in a low-density region (left-hand tail).

» In practice we do not have access to nj*. What can be done?
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Model Objective Solution Application

A supervised-learning solution

Solution Algorithm: Regression-based anomaly
detection

> Learn 7);, estimator of 77;‘, using a regression Input: Dyygin, Dp, node j, threshold s
algorithm (logistic, random forest, etc.) over Regression algorithm: Regressor(-)
irain Output: 1if anomaly, 0, otherwise
& () (i
> Use f); instead of i7" to build Fyy;, and compute ) <— Regressor (Dtrain = {X\(j), X,( )})
the previous anomaly score fori=1...,ndo
pi— A(x))

> Fix a threshold above which m; is considered

end for
abnormal (e.g. 0.99 or 0.95)

F <—PoiBin(§: xj('); ﬁf‘), B )
$+— max(F,1—F)
if § > sthen
Output 1: Abnormal node
else
Output 0: Normal node
end if
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Model Objective Solution Application

Sigfox application

Dataset Setup

> 34 BS, 232000 messages over 5 months > Regressor: Random forest from scikit-learn, by
default hyperparameters (no tuning)
> Training set: first month(~ 35000 messages)
> Threshold fixed via CV over the training set s.t.

> Daily prediction over the 4 other months: 120 False positive rate ~ 0.01
testing data sets (~ 1600 messages/day in
average) > Baseline: basic feature engineering + One-class

SVM (Schélkopf et al. 2001 [19])
> 1 failing BS, approximately from March, i.e. 30
normal days, 90 abnormal

P Dataset available online
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Model Objective Solution Application

Results
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Model Objective Solution Application

Results (2)
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Figure: ROC curves and their respective AUC.

> Convincing results: the proposed approach seems adapted
> Larger-scale experiments, performed internally at Sigfox, corroborate those results

> A more general presentation of the method in [Le Bars and Kalogeratos, INFOCOM 2019]

11/26



Graph Learning

Part 2

Graph inference from smooth and bandlimited
graph signals
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Background Problem Statement Optimization Experiments

Background

Graph Signal Processing (GSP)
> Generalizes signal processing concepts for graph signals (smoothness, Fourier transform, sampling,
filtering, etc.)
> Temporal signals and images are graph signals with specific graph (cycles and grid)

> Having access to the graph is a strong assumption: graph learning
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Graph Learning

Background

Background

Graph Signal Processing (GSP)
> Generalizes signal processing concepts for graph signals (smoothness, Fourier transform, sampling,
filtering, etc.)
> Temporal signals and images are graph signals with specific graph (cycles and grid)

> Having access to the graph is a strong assumption: graph learning

Definition (Graph Fourier Transform)

Definition (Graph Laplacian)

The graph Laplacian of a graph G = (V, &) with Let G = (V,&) and L = XAX" be the eigenvalue
weight matrix W and degree matrix D is the matrix decomposition of its Laplacian matrix. The Graph
L=D—-—W Fourier Transform (GFT) of a graph signal y € RP
/ is given by
h=X"y
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Graph Learning
Problem Statement

Problem Statement

Goal: Learn the Laplacian L that best explains the structure of n graph signals Y = [y(l)7 cee, y(”)] of size N.
> Need for structural assumptions that link L to Y
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Problem Statement

Goal: Learn the Laplacian L that best explains the structure of n graph signals Y = [y(l)7 cee, y(”)] of size N.
> Need for structural assumptions that link L to Y
Assumptions:
» G is undirected and has a single connected component
> The graph signals are smooth with respect to G i.e. y(JTLy() = i wkl(y,Ei) — y,("))2 is small
> They have a bandlimited spectrum i.e. Vi, A = XTy(i) has some zero-valued coefficients at same
dimensions
— Basic assumption of sampling methods (Chen et al. 2015 [2])
— Different notion of smoothness
— Also relies to the cluster structure of the graph (Sardellitti et al. 2019 [18])

Figure: Three smooth graph signals (N = 300) with decreasing bandlimitedness: (a) 150-sparse, (b) 6-sparse, (c) 3-sparse.
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Background Problem Statement Optimization Experiments

Optimization program

. Y — XH 2 A]/ZH 2 H
grin | lF +all I+ BllHIs

X'X = In, x1 = LN‘IN (a)
st (XAX)ie <0 k#4 (b)
A = diag(0, A2, ..., An) =0 (¢)
tr(A) = N € Rf (d)

> Learn XAXT instead of L
P Y are assumed to be noisy version of some true graph vectors XH

> H stands for the graph Fourier transform of the true graph vectors
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Background Problem Statement Optimization Experiments

Optimization program

. Y — XH 2 A]/ZH 2 H
Jnin [F + I+ BlHIls

X'X = In, x1 = ﬁ][\/ (a)
st (XAX)ie <0 k#4 (b)
o A = diag(0,A2,...,Av) =0 (c)
tr(A) = N € Rf (d)
» ||Y — XH||% stands for the reconstruction error
> ||A'/2H]|% controls the smoothness of the approximation XH
> ||H|ls = ||H||2,0 or ||H||2,1 enforces the GFT to be 0 at the same dimensions
> o and 3 are positive hyperparameters
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Optimization program

. Y — XH 2 A]/ZH 2 H
grin | lF +all I+ BllHIs

XX = Iy, xi = =1y (a)
st (XAX)ie <0 k#4 (b)
o A = diag(0,A2,...,An) =0 (c)
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> ||A'/2H]|% controls the smoothness of the approximation XH
> ||H|ls = ||H||2,0 or ||H||2,1 enforces the GFT to be 0 at the same dimensions
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> (a), (b) and (c) ensure XAXT to be a Laplacian

> (d) makes sure the graph has edges
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Background Problem Statement Optimization Experiments

Solving the program (overview)

> Optimization program not convex + very difficult to updates all variables directly
— Use block-coordinate descent

> Other problem: constraint (b) (XAX"), < 0 difficult to handle at the X-step
— Solution: IGL-3SR and FGL-3SR [Le Bars et al.,, ICASSP 2019, Humbert et al., JMLR 2021]

» Both relax (b) and use block-coordinate descent over X, A and H

. Y — XH 2 A]/ZH 2 H
grin | IF +all I+ BllHIs

XTX = IN,X1 = ﬁh\/ (a)
st (X/\XT)k,g <0 k#¢ (b)
A = diag(0, A2, ..., An) =0 (¢)
tr(A) = N € Rf (d)
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Graph Learning
Optimization

Solving the program (overview)

> Optimization program not convex + very difficult to updates all variables directly
— Use block-coordinate descent

> Other problem: constraint (b) (XAX"), < 0 difficult to handle at the X-step
— Solution: IGL-3SR and FGL-3SR [Le Bars et al., ICASSP 2019, Humbert et al. JMLR 2021]

» Both relax (b) and use block-coordinate descent over X, A and H

IGL-3SR FGL-3SR

Relaxation: use a log-barrier function to put (b) in the Relaxation: get rid of (b), only at the X-step
objective

+ Lower complexity
+ Each sub-problem is solvable using known techniques + 2/3 steps has closed-form
+ Decrease at each step and stays in the constraint set + Returns a Laplacian even with the relax-
+ Iterates are ensured to converge ation
- High complexity - Objective function value can increase
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Background Problem Statement Optimization Experiments

Synthetic data

> Large simulation study in [Le Bars et al., ICASSP 2019, Humbert et al., JMLR 2021]
> True graphs: Random Geometric or Erdés-Renyi

> Y sampled via factor analysis model

> Comparison with two GSP baselines:

— GL-SigRep (Dong et al. 2016 [5]): Only smoothness
— ESA-GL (Sardellitti et al. 2019 [18]): Bandlimitedness
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Background Problem Statement Optimization Experiments

Synthetic data

> Large simulation study in [Le Bars et al., ICASSP 2019, Humbert et al., JMLR 2021]
> True graphs: Random Geometric or Erdés-Renyi

> Y sampled via factor analysis model

> Comparison with two GSP baselines:

— GL-SigRep (Dong et al. 2016 [5]): Only smoothness
— ESA-GL (Sardellitti et al. 2019 [18]): Bandlimitedness

Results and conclusion
> IGL-3SR outperforms baselines and FGL-3SR in terms of true graph recovery
> It is very slow, not practical for 2 20 nodes

> FGL-3SR is a good compromise between graph recovery and time before convergence

Conclusion
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Background Problem Statement

Optimization Experiments

A real-world illustration

> Temperature data in Brittany (Chepuri et al.
2017 [4])

» N = 32 weather station

» n = 744 measurements

> o = 1074 /3 s.t 2-bandlimited

> spectral clustering to ascess the quality

(a) A measurement example and the learned graph.

(b) Spectral clustering with the learned graph.

> Coherent with the spatial distribution. Splits the north from the south of Brittany
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Temporal Ising

Part 3

Detecting changes in the graph structure of a
varying Ising model



Introduction Network anomaly detection Graph Learning Temporal Ising

Background Model and learning Theory Experiments

Background

Context
> Probabilistic modeling, the data come from a Markov Random Field (MRF)
> Binary vector data: Ising model

> Change-point detection with unknown number of change-points
> Related works:

~ Detection in Gaussian graphical models (Gibberd and Nelson, 2017 [8])
~ Detection in Ising with known number of change-points (Roy et al. 2017 [17])

Conclusion
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Background

Background

Context
> Probabilistic modeling, the data come from a Markov Random Field (MRF)
> Binary vector data: Ising model

> Change-point detection with unknown number of change-points
> Related works:

~ Detection in Gaussian graphical models (Gibberd and Nelson, 2017 [8])
~ Detection in Ising with known number of change-points (Roy et al. 2017 [17])

Ising model

Let G = (V, E) and Q € RP*P symmetric whose non-zero elements correspond to the set of edges E. The
probability distribution function (pdf) of an Ising random vector X:

PQ(X = X) Z(Q) exp ZXawaab

> Z(Q) : Normalizing constant
> xe{-1,1}F
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Temporal Ising
Model and learning

Model and objectives

Piece-wise constant Ising model

> Time-series of nindependent Ising vectors X() with parameter Q)

> Piecewise constant evolving structure:

D
Q) =3~ e i{r, <i< Ty}
k=0
To=1and Tpt1 =n—+ 1.
» D change-points appearing a time Ty, ..., Tp
» D+ 1sub-model parametrized by (V). .. ©(P+1)
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Model and learning

Model and objectives

Piece-wise constant Ising model

> Time-series of nindependent Ising vectors X() with parameter Q)

> Piecewise constant evolving structure:

D
Q) =3~ e i{r, <i< Ty}
k=0
To=1and Tpt1 =n—+ 1.
» D change-points appearing a time Ty, ..., Tp
» D+ 1sub-model parametrized by (V). .. ©(P+1)

Objectives:

> Learn for each X() its associated parameter Q()

> Infer the number of change-points D and their time instances
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Temporal Ising
Model and learning

Learning

> Can we use standard maximum likelihood approach ?
— No, due to the intractability of Z(-) and the high-dimensional scenario

> Instead, penalized neighborhood selection strategy: TVI-FL [Le Bars et al., ICML 2020]

For each node j = 1,..., p, we solve

@j = argmin Lj(w) +peny, x,(w)
wERP—1Xn

> A column & of @j corresponds to the j-th row/column of Q®

— The neighborhood’s weights of node j at time i
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Temporal Ising
Model and learning

Learning

For each node j = 1,..., p, we solve

Bj= argmin £;(w) +peny, ()
weRP—1Xn

Li(w)2 Zlog( L0 01D

= Z log {exp ( ) + exp ( )} ZX (0 ,,(OT ({')

> Conditional log-likelihood of node j knowing the other nodes values

» Convex function
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Temporal Ising
Model and learning

Learning

For each node j = 1,..., p, we solve

Wj = argmin L}'(w) +pen>\1,)\2(w)
wERP—1Xn

peny (@) £ 20 37w =0z + 20 37 )
=2 i=1

> )i and A; are positive hyperparameters

> The first term - fused penalty - controls the piece-wise constant structure and the number of
change-points

> The second term - lasso penalty - imposes sparsity in the learnt neighborhood
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Learning

For each node j = 1,..., p, we solve

Wj = argmin L}'(w) +pen>\1,)\2(w)
wERP—1Xn

peny (@) £ 20 37w =0z + 20 37 )
=2 i=1

> )i and A; are positive hyperparameters

> The first term - fused penalty - controls the piece-wise constant structure and the number of
change-points

> The second term - lasso penalty - imposes sparsity in the learnt neighborhood

In conclusion:
» Non-differentiable but convex function

> TVI-FL solvable by convex programming tools and software

> Set of estimated change-points : D = {?k €{2,...,n}: ||A(T" — @](Tk_n I # O}

20/26



Introduction Network anomaly detection Graph Learning Temporal Ising Conclusion

Background Model and learning Theory Experiments

Theoretical analysis
Assumptions:
| 2 (A'l) AP min > 0 and Pmax < 00 s.t. Gmin < Amin (]E@(k) [X\jX\;r]) and @max > Amax (]E@(k) [X\jX\t’r])

> (A2) There exists M > 0 s.t. mane[o+1]\l9fk)llz <M
> (A3)Forallk=1,...,D, Ty = | n7¢| with unknown 7 € [0, 1]
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Temporal Ising
Theory

Theoretical analysis
Assumptions:
| 2 (A]) AP min > 0 and Pmax < 00 s.t. Gmin < Amin (]E@(k) [X\,-X\JT]) and @max > Amax (]Ee(k) [X\jX\t’r])

> (A2) There exists M > 0 s.t. mane[o+1]\|9fk)llz <M
> (A3)Forallk=1,...,D, Ty = | n7¢| with unknown 7 € [0, 1]

Theorem - Change-Point consistency

Consider (A1-A3) and let {0, },>1 be a non-increasing sequence that converges to 0 and s.t. nd, — oo.
If D = D, we have:
— <
[P(k:T??'(’D|Tk Ti| < nén) n::o 1

> Drawback: D = D difficult to verify
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Temporal Ising
Theory

Change-Point consistency 2

> d(A||B) = suppepinfaca |b —

Proposition

Under the same conditions, if D < D then:

P(d(D||D) < né,) —> 1
n— oo

> Overestimated number of change-points

> Asymptotically, all the true change-points belong to the estimated set of change-points
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Background Model and learning Theory Experiments

Voting data set

> Votes (yes/no) in Illinois house of

representatives (Lewis et al. 2020 [13]) Gﬁ#‘\w\
X
> 18 seats — 18 nodes & \Ll\“ ;
W S\
> 1264 votes ,‘!"*?‘"’%\‘%' )

> 114-th and 115-th US Congresses
(2015-2019)

> \i and A\, minimizing AIC

—— Republicans
500 | — Democrats
—— Seat N°10

Results: ano || 777 EStmayed Changerpoints -y
> Party structure: Republican vs Democrat L i i
> Biggest change-point: End of congress % o E i
> Seat 10 change party H |
> Brings knowledge: seat 10 is a o :

super-collaborator 0

-100

0 200 400 600 800 1000 1200
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Conclusion



Introduction Network anomaly detection Graph Learning Temporal Ising Conclusion

Conclusion

A diverse work ...
> Anomaly detection, change-point detection, graph learning, optimization
> GSP framework, probabilistic framework
> Not discussed: robust kernel density estimation [Le Bars et al., 2020]
> Codes available online at github. com/BatistelLB

.. with open questions
P Online version for change-point detection of part 3
> Better theoretical understanding: consistent graph recovery?
> Improve optimization of part 2 and 3

> Make a better use of the graph in part 1
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tion Network anomaly detection Graph Learning Tempora

What about my postdoc?

Fully decentralized federated learning

> Decentralized algorithms depend on a graph topology
— also impacts the convergence!

> Impact increases when data are non iid
> Objective: learning data-dependent graphs that can speed-up convergence

Learning with privacy

> Learning graphs under privacy constraints
> Privately learning the graph proposed above

> Markov Random Fields inference under (local) differential privacy

Conclusion
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Publications and preprints

> B. Le Bars, and A. Kalogeratos. A Probabilistic Framework to Node-level Anomaly Detection in
Communication Networks. In 2019 IEEE Conference on Computer Communications (INFOCOM), 2019

> B. Le Bars, P. Humbert, L. Oudre, and A. Kalogeratos. Learning Laplacian Matrix from Bandlimited Graph
Signals. In 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019

> B. Le Bars, P. Humbert, A. Kalogeratos, and N. Vayatis. Learning the piece-wise constant graph structure of
a varying Ising model. In 2020 International Conference on Machine Learning (ICML), 2020

> B. Le Bars, P. Humbert, L. Minvielle, and N. Vayatis. Robust Kernel Density Estimation with
Median-of-Means principle. Arxiv preprint, 2020

> P. Humbert, B. Le Bars, L. Oudre, A. Kalogeratos, and N. Vayatis. Learning Laplacian Matrix from Graph
Signals with Sparse Spectral Representation. In Journal of Machine Learning Research (JMLR), 2021
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Results bilateral

Number of messages

- T
20009 True recorded value 40009 — True recorded value
17504 —— Lower bound 3500{ —— Lower bound
—— Upper bound —— Upper bound
1500 1 Approximate anomaly beginning i 3000 Falling out
. o .
True anomaly ending & 2500 Confidence
@
Falling Out g
10004 Confidence = 2000 {
: @
750 4 8 J
2 1500
E
500 < 1000
2501 500 4
04 04
T t+ T T T T T - T T T T T T T T
3 % > ) > ) > ) 3 3 % > ) > S 3 ) 3
1'01,0 1’@,\, &S 1_“3,\, 1_&,0 1_@&,\, 1,&”0 1_06,\, &S 1101,0 1’@,\, &S 1_“3,\, 1_0&,0 1_@,\, 1,&‘)’0 o )
O I T LA A S O S S G L I
(a) Abnormal Base Station - Bilateral intervals (b) Normal Base Station - Bilateral intervals
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FGL-3SR

minll Y = XHIE + | AV2HI2+8] Hs

No constraint

Equivalent to multiple sparse linear regression problems
Closed-form solutions

[Ills = |I||2,0: hard-thresholding

[[lls = |I||2,1: solf-thresholding

vyVVvyVvYyYYVvyy
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FGL-3SR
min||Y — XH|2 st XX =] x1:i1 (a)
! F bilo N> \/N N

> (b) is out

» Non-convex but has a closed-form:

)y [ T O,
X X [oN_1 Pq |

where the columns in P and Q are the left- and right-singular vectors of (X(tJ”)T YH ), 5.
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FGL-3SR
(XAXT);j <0 i), (b)
min o tr(HH'A) s.t A = diag(0,X2,...,An) =0, (c)
Ne—— tr(A) = N € R | (d)

IA1/2H12

» (b) is back
> Linear program: can be solved via solvers

> Property: for all X that satisfies (a), there exist A that satisfies (b), (c) and (d)
— Need to finish by this step
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Synthetic data graph learning - Results

RG graph model

ER graph model

N Metrics IGL-3SR FGL-3SR ESA-GL GL-SigRep \ IGL-3SR FGL-3SR ESA-GL GL-SigRep
Fi-measure || 0.97(+0.03)  0.97(+0.03)  0.93(£0.03)  0.95(+0.04) | 0.94(+0.03)  0.82(+0.07)  0.94(+0.04)  0.78 (£0.07)
20 p(L, 1) 0.94(+0.05)  0.90(£0.03)  0.92(£0.05)  0.79(£0.04) | 0.92(+0.03)  0.73(+0.06)  0.90(+0.04)  0.20 (£0.07)
Time < Tmin < 10s < 5s < 5s < Tmin < 10s < 5s < 5s
F-measure || 0.90(+0.01)  0.81(£0.02)  0.87(40.04)  0.75(40.01) | 0.81(+0.02)  0.76(£0.03)  0.84 (£+0.02)  0.61(+0.03)
50 p(L, 1) 0.86 (+0.02)  0.74(£0.03)  0.83(£0.03)  0.55(40.02) | 0.78(+0.03)  0.73(£0.02)  0.82(%0.06)  0.06 (+0.01)
Time < 17mins < 40s < 60s < 40s < 17mins < 40s < 60s < 40s
Fi-measure || 0.73(£0.03)  0.64(£0.01)  0.70 (£0.01) - 0.62(+0.01)  0.59(£0.02)  0.59 (£0.02) -
100 p(L, 1) 0.61(£0.04)  0.48(£0.01)  0.60 (£0.03) - 0.55(£0.02)  0.51(=£0.022)  0.64 (+0.02) -
Time < 50mins < 2mins < 4mins - < 50mins < 2mins < 4mins -
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Synthetic data

> n =100, p = 20, 2 Change-Points
> Random Regular Graphs with degree € {2, 3,4}
> Competitor: Tesla (Kolar et al. [12])

» Metrics, Fi-score and h-score:

—~ 1 ~ ~
h(D,D) £ — max { max min|t — 7|, max min|t — | 5.
n teD D teD te€D

€D
10 h-score = 0.0 h h-score < 0.03
EEA TVIFL EEA TVIFL

08 B Tesla 08 I Tesla
2 06 £ 06
8 S
S S
2 3
04 004

02 02

00 00

degree — 2 degree — 3 degree — & degree — 2 degree =3 degree = 4

Figure: Average Fy-score obtained when the h-score is below a certain threshold.

> Outperforming Telsa, not designed for proper CP detection

> Complete results in the main paper
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Sigfox data set TVI-FL

P Same data set as in part 1
> X1 and \; selected via AIC
> Several change-points, but an important one around the 30th day

Plassance-du
Touch

Plasancedu
Touch

e *

S e o Lnone

Figure: (Left) A graph learned before the BS failure, recorded on the 30th day. (Right) A graph learned after this day
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Robust Kernel Density Estimator

Classical framework Outlier framework
> {Xi,..., X0} > {Xi,..., X} =0UT
> Vi=1,...,nXi~f > VYiel Xi~f
> Kernel Density Estimator (KDE): > Bi,...,Bs: random partition of [n]
N 1 U Xi X > ns = |Bs|
=—>Sk
Jal) nhd Z ( h ) > Median-of-Means KDE:

fMaM(xo) o Median (ﬁ” (x0),--- ,fns (xo))
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Robust Kernel Density Estimator

True density

0.2 +  outliers
----- KDE
—— MoM-KDE

T
(a) One-dimensional

True density KDE MoM-KDE

+ outliers @ @
5 4 4 4

2
®@
X2

(b) Two-dimensional
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