Contributions to graph learning and change point detection Magnet seminar

Batiste Le Bars

Magnet, Inria Lille Before: Centre Borelli, ENS Paris-Saclay

Jeudi 13 Janvier 2022

Inría Com

Industrial context

What is Sigfox?

- \blacktriangleright Internet-of-Things network
- ▶ 28k Base Stations (BS)

- \blacktriangleright A message can be received by all nearby BS
- I ∼ 56M messages/day
- \blacktriangleright 72 countries

Industrial context

What is Sigfox?

 \blacktriangleright Internet-of-Things network

▶ 28k Base Stations (BS)

Objective

Detect BS failure using the data collected in the network

- \blacktriangleright A message can be received by all nearby BS
- I ∼ 56M messages/day
- \blacktriangleright 72 countries

Industrial context

What is Sigfox?

- \blacktriangleright Internet-of-Things network
- ▶ 28k Base Stations (BS)

- \triangleright A message can be received by all nearby BS
- I ∼ 56M messages/day
- \blacktriangleright 72 countries

Objective

Detect BS failure using the data collected in the network

Which data?

- \triangleright Only reception information
- I For each message, which BS received it (1) or not (0)

- "Pure" data: almost no processing
- \triangleright Collected at the level of nodes in a network: Graph vectors!

General context

Graph vectors

- ► Let $G = (\mathcal{V}, \mathcal{E})$ be a graph, $y : \mathcal{V} \to \mathbb{R}$ is a graph vector
- \blacktriangleright Also referred as graph signals or graph data
- \blacktriangleright Examples: Sigfox data, Social network data, EEG etc.

General context

Graph vectors

- In Let $G = (\mathcal{V}, \mathcal{E})$ be a graph, $y : \mathcal{V} \to \mathbb{R}$ is a graph vector
- \blacktriangleright Also referred as graph signals or graph data
- \blacktriangleright Examples: Sigfox data, Social network data, EEG etc.

Figure: Electroencephalogram (EEG) seen as a set of graph data

General context

Graph vectors

- Let $G = (\mathcal{V}, \mathcal{E})$ be a graph, $y : \mathcal{V} \to \mathbb{R}$ is a graph vector
- \blacktriangleright Also referred as graph signals or graph data
- I Examples: Sigfox data, Social network data, EEG etc.

Problems

- \blacktriangleright Graph known: \rightarrow improve the performance of your learning/statistical tasks
- \blacktriangleright Graph unknown: \rightarrow learn it to better understand the data

Figure: Electroencephalogram (EEG) seen as a set of graph data

Objectives and motivations

Event detection for graph vectors

- Anomaly or Change-point detection
- \triangleright Motivated by Sigfox application (BS failure)
- **IF** Applications: network security, sensor's breakdown, etc.

Objectives and motivations

Event detection for graph vectors

- \blacktriangleright Anomaly or Change-point detection
- \triangleright Motivated by Sigfox application (BS failure)
- **I** Applications: network security, sensor's breakdown, etc.

Graph learning

- Infer the relationship between variables (similarity, dependency, etc.)
- \blacktriangleright Visualize and model the vectors. Apply graph-based learning algorithms
- **ID** Applications: gene co-expression, movie recommendation, etc.

Objectives and motivations

Event detection for graph vectors

- \blacktriangleright Anomaly or Change-point detection
- \triangleright Motivated by Sigfox application (BS failure)
- \blacktriangleright Applications: network security, sensor's breakdown, etc.

Graph learning

- Infer the relationship between variables (similarity, dependency, etc.)
- \triangleright Visualize and model the vectors. Apply graph-based learning algorithms
- \blacktriangleright Applications: gene co-expression, movie recommendation, etc.

Detect changes in the underlying graph

- \triangleright Combination of graph learning and change-point detection
- \blacktriangleright More difficult
- \blacktriangleright Keeps the advantages of the previous tasks

Related works

Event detection for graph vectors

- ▶ Use the graph to build features (Chen et al. 2018 [\[3\]](#page-61-0), Egilmez et al. 2014 [\[6\]](#page-61-1))
- \blacktriangleright Different levels of detection
	- \rightarrow node-level (Ji et al. 2013 [\[11\]](#page-61-2)), subgraph-level (Neil et al. 2013 [\[15\]](#page-62-0)), graph-level (Chen et al. 2018 [\[3\]](#page-61-0))

Related works

Event detection for graph vectors

- I Use the graph to build features (Chen et al. 2018 [\[3\]](#page-61-0), Egilmez et al. 2014 [\[6\]](#page-61-1))
- \blacktriangleright Different levels of detection
	- \rightarrow node-level (Ji et al. 2013 [\[11\]](#page-61-2)), subgraph-level (Neil et al. 2013 [\[15\]](#page-62-0)), graph-level (Chen et al. 2018 [\[3\]](#page-61-0))

Graph learning

- I Statistical framework: estimating parameters of Markov Random Fields
	- \rightarrow Gaussian model (Friedman *et al.* 2008 [\[7\]](#page-61-3)), Ising model (Ravikumar *et al.* 2010 [\[16\]](#page-62-1), Goel *et al.* 2019 [\[9\]](#page-61-4))
- \blacktriangleright Graph signal processing framework
	- \rightarrow Smoothness (Dong *et al.* 2016 [\[5\]](#page-61-5)), sparsity of the graph spectral domain (Sardellitti *et al.* 2019 [\[18\]](#page-62-2))

Related works

Event detection for graph vectors

- I Use the graph to build features (Chen et al. 2018 [\[3\]](#page-61-0), Egilmez et al. 2014 [\[6\]](#page-61-1))
- \blacktriangleright Different levels of detection
	- \rightarrow node-level (Ji et al. 2013 [\[11\]](#page-61-2)), subgraph-level (Neil et al. 2013 [\[15\]](#page-62-0)), graph-level (Chen et al. 2018 [\[3\]](#page-61-0))

Graph learning

- I Statistical framework: estimating parameters of Markov Random Fields \rightarrow Gaussian model (Friedman *et al.* 2008 [\[7\]](#page-61-3)), Ising model (Ravikumar *et al.* 2010 [\[16\]](#page-62-1), Goel *et al.* 2019 [\[9\]](#page-61-4))
- \triangleright Graph signal processing framework \rightarrow Smoothness (Dong et al. 2016 [\[5\]](#page-61-5)), sparsity of the graph spectral domain (Sardellitti et al. 2019 [\[18\]](#page-62-2))

Detect changes in the underlying graph

- Statistical framework (Roy et al. 2017 [\[17\]](#page-62-3), Londschien et al. 2020 [17] [\[14\]](#page-62-4))
- Graph signal processing framework (Yamada et al. 2020 [\[20\]](#page-62-5))
- ▶ Known (Bybee and Atchadé, 2018 [\[1\]](#page-61-6)) vs Unknown (Gibberd and Nelson, 2017 [\[8\]](#page-61-7)) number of change-points

Outline

1. Node-level anomaly detection in networks: application to Sigfox

2. Graph inference from smooth and bandlimited graph signals

3. Detecting changes in the graph structure of a varying Ising model

4. Conclusion

Part 1

-

Node-level anomaly detection in networks: application to Sigfox

Model

 \blacktriangleright Let N be the number of considered BS

Assumption 1: Sigfox messages are independent random vectors

Model

 \blacktriangleright Let N be the number of considered BS

Definition (Fingerprint) The *fingerprint* of a Sigfox message is $X~=~(X_1,\ldots,X_N)~\in~\{0,1\}^N,$ where $X_j~=~1$ if BS j received the message, 0 otherwise

IN Assumption 1: Sigfox messages are independent random vectors

Definition (Conditional probability function)

Let a BS $j \in [N]$, The conditional probability function of j is

$$
\eta_j^*(x_{ij}) \triangleq \mathbb{P}(X_j = 1 | X_{ij} = x_{ij}),
$$

where $X_{\backslash j}$ is the vector X without its j -th component

In Assumption 2: The conditional probability function of a BS j doesn't change over time

Objective and scoring function

Goal: Given a set $\mathcal{D}_n = \{X^{(i)}\}_{i=1}^n$ and its realization $\{X^{(i)}\}_{i=1}^n$, fix a BS $j \in [N]$ and determine if $m_j = \sum_{i=1}^n x_j^{(i)}$ is abnormally low

In Assumption 3: We have access to a set of normal communication behaviors D_{train}

Objective and scoring function

Goal: Given a set $\mathcal{D}_n = \{X^{(i)}\}_{i=1}^n$ and its realization $\{X^{(i)}\}_{i=1}^n$, fix a BS $j \in [N]$ and determine if $m_j = \sum_{i=1}^n x_j^{(i)}$ is abnormally low

IDED Assumption 3: We have access to a set of normal communication behaviors \mathcal{D}_{train}

A natural scoring function

- \triangleright Use values of the other BS
- ▶ Knowing $X_{ij}^{(i)}=x_{ij}^{(i)}$, $M_j=\sum_{i=1}^nX_j^{(i)}$ is a Poisson Binomial distribution with parameter $\{\eta_j^*(x_{ij}^{(i)})\}_{i=1}^n$

► Given η_j^* , its cumulative distribution function (cdf) $F_{M_j}(\cdot)$ can be computed efficiently (Hong, 2013 [\[10\]](#page-61-8))

Objective and scoring function

Goal: Given a set $\mathcal{D}_n = \{X^{(i)}\}_{i=1}^n$ and its realization $\{X^{(i)}\}_{i=1}^n$, fix a BS $j \in [N]$ and determine if $m_j = \sum_{i=1}^n x_j^{(i)}$ is abnormally low

IDED Assumption 3: We have access to a set of normal communication behaviors \mathcal{D}_{train}

A natural scoring function

- \blacktriangleright Use values of the other BS
- ▶ Knowing $X_{ij}^{(i)}=x_{ij}^{(i)}$, $M_j=\sum_{i=1}^nX_j^{(i)}$ is a Poisson Binomial distribution with parameter $\{\eta_j^*(x_{ij}^{(i)})\}_{i=1}^n$
- ► Given η_j^* , its cumulative distribution function (cdf) $F_{M_j}(\cdot)$ can be computed efficiently (Hong, 2013 [\[10\]](#page-61-8))

Definition (Anomaly scoring function)

A natural score of abnormality for m_j is given by:

$$
s(m_j)=\mathbb{P}(M_j>m_j)=1-F_{M_j}(m_j),
$$

where close to 1 value means m_i stands in a low-density region (left-hand tail).

In practice we do not have access to η_j^* . What can be done?

A supervised-learning solution

Solution

- ► Learn $\hat{\eta}_j$, estimator of η^*_j , using a regression algorithm (logistic, random forest, etc.) over \mathcal{D}_{train}
- ► Use $\hat{\eta}_j$ instead of η_j^* to build F_{M_j} , and compute the previous anomaly score
- Fix a threshold above which m_j is considered abnormal (e.g. 0.99 or 0.95)

Algorithm: Regression-based anomaly detection

Input: D_{train} , D_n , node *j*, threshold *s* Regression algorithm: Regressor(·) Output: 1 if anomaly, 0, otherwise

$$
\hat{\eta} \leftarrow \text{Regression}\left(\mathcal{D}_{train} = \{\tilde{x}_{\backslash j}^{(i)}, \tilde{x}_{j}^{(i)}\}\right)
$$
\n
$$
\text{for } i = 1..., n \text{ do}
$$
\n
$$
\hat{p}_{i} \leftarrow \hat{\eta}(x_{\backslash j}^{(i)})
$$
\n
$$
\text{end for}
$$
\n
$$
\hat{F} \leftarrow \text{PoiBin}\left(\sum x_{j}^{(i)}; \hat{p}_{j}^{(1)}, \dots, \hat{p}_{j}^{(n)}\right)
$$
\n
$$
\hat{s} \leftarrow \max(\hat{F}, 1 - \hat{F})
$$
\n
$$
\text{if } \hat{s} > s \text{ then}
$$
\n
$$
\text{Output 1: Abnormal node}
$$
\n
$$
\text{else}
$$
\n
$$
\text{Output 0: Normal node}
$$
\n
$$
\text{end if}
$$

Sigfox application

Dataset

- ▶ 34 BS, 232000 messages over 5 months
- I Training set: first month(∼ 35000 messages)
- Daily prediction over the 4 other months: 120 testing data sets (∼ 1600 messages/day in average)
- 1 failing BS, approximately from March, i.e. 30 normal days, 90 abnormal
- I Dataset available online

Setup

- \blacktriangleright Regressor: Random forest from scikit-learn, by default hyperparameters (no tuning)
- \blacktriangleright Threshold fixed via CV over the training set s.t. False positive rate ∼ 0.01
- \blacktriangleright Baseline: basic feature engineering + One-class SVM (Schölkopf et al. 2001 [\[19\]](#page-62-6))

[Model](#page-15-0) [Objective](#page-17-0) [Solution](#page-20-0) [Application](#page-21-0)

Results

(a) Abnormal Base Station

(b) Normal Base Station

[Model](#page-15-0) [Objective](#page-17-0) [Solution](#page-20-0) [Application](#page-21-0)

Results (2)

Figure: ROC curves and their respective AUC.

- \triangleright Convincing results: the proposed approach seems adapted
- \blacktriangleright Larger-scale experiments, performed internally at Sigfox, corroborate those results
- A more general presentation of the method in [Le Bars and Kalogeratos, INFOCOM 2019]

Part 2

-

Graph inference from smooth and bandlimited graph signals

Background

Graph Signal Processing (GSP)

- \triangleright Generalizes signal processing concepts for graph signals (smoothness, Fourier transform, sampling, filtering, etc.)
- \triangleright Temporal signals and images are graph signals with specific graph (cycles and grid)
- \blacktriangleright Having access to the graph is a strong assumption: graph learning

Background

Graph Signal Processing (GSP)

- ▶ Generalizes signal processing concepts for graph signals (smoothness, Fourier transform, sampling, filtering, etc.)
- \triangleright Temporal signals and images are graph signals with specific graph (cycles and grid)
- \blacktriangleright Having access to the graph is a strong assumption: graph learning

Definition (Graph Laplacian)

The graph Laplacian of a graph $G = (\mathcal{V}, \mathcal{E})$ with weight matrix W and degree matrix D is the matrix $l = D - W$

Definition (Graph Fourier Transform)

Let $G = (\mathcal{V}, \mathcal{E})$ and $L = X \Lambda X^{T}$ be the eigenvalue decomposition of its Laplacian matrix. The Graph Fourier Transform (GFT) of a graph signal $y \in \mathbb{R}^p$ is given by

$$
h=X^{\mathrm{T}}y
$$

Goal: Learn the Laplacian L that best explains the structure of *n* graph signals $Y = [y^{(1)}, \ldots, y^{(n)}]$ of size *N*.

 \blacktriangleright Need for structural assumptions that link L to Y

Goal: Learn the Laplacian L that best explains the structure of *n* graph signals $Y = [y^{(1)}, \ldots, y^{(n)}]$ of size *N*.

 \blacktriangleright Need for structural assumptions that link L to Y

Assumptions:

 \triangleright G is undirected and has a single connected component

Goal: Learn the Laplacian L that best explains the structure of *n* graph signals $Y = [y^{(1)}, \ldots, y^{(n)}]$ of size *N*.

 \blacktriangleright Need for structural assumptions that link L to Y

Assumptions:

- \triangleright G is undirected and has a single connected component
- The graph signals are **smooth** with respect to G i.e. $y^{(i)T}Ly^{(i)} = \frac{1}{2} \sum w_{kl} (y_k^{(i)} y_l^{(i)})^2$ is small

Goal: Learn the Laplacian L that best explains the structure of *n* graph signals $Y = [y^{(1)}, \ldots, y^{(n)}]$ of size *N*.

 \blacktriangleright Need for structural assumptions that link L to Y

Assumptions:

- \triangleright G is undirected and has a single connected component
- The graph signals are **smooth** with respect to G i.e. $y^{(i)T}Ly^{(i)} = \frac{1}{2} \sum w_{kl} (y_k^{(i)} y_l^{(i)})^2$ is small
- **►** They have a **bandlimited** spectrum i.e. $\forall i$, $h^{(i)} = X^T y^{(i)}$ has some zero-valued coefficients at same dimensions

Goal: Learn the Laplacian L that best explains the structure of *n* graph signals $Y = [y^{(1)}, \ldots, y^{(n)}]$ of size *N*.

 \blacktriangleright Need for structural assumptions that link L to Y

Assumptions:

- \triangleright G is undirected and has a single connected component
- The graph signals are **smooth** with respect to G i.e. $y^{(i)T}Ly^{(i)} = \frac{1}{2} \sum w_{kl} (y_k^{(i)} y_l^{(i)})^2$ is small
- **►** They have a **bandlimited** spectrum i.e. $\forall i$, $h^{(i)} = X^T y^{(i)}$ has some zero-valued coefficients at same dimensions
	- \rightarrow Basic assumption of sampling methods (Chen *et al.* 2015 [\[2\]](#page-61-9))
	- \rightarrow Different notion of smoothness
	- \rightarrow Also relies to the cluster structure of the graph (Sardellitti *et al.* 2019 [\[18\]](#page-62-2))

Figure: Three smooth graph signals ($N = 300$) with decreasing bandlimitedness: (a) 150-sparse, (b) 6-sparse, (c) 3-sparse.

$$
\min_{H,X,\Lambda} ||Y - XH||_F^2 + \alpha ||\Lambda^{1/2}H||_F^2 + \beta ||H||_S
$$
\ns.t.\n
$$
\begin{cases}\nX^T X = I_N, x_1 = \frac{1}{\sqrt{N}} \mathbf{1}_N & \text{(a)} \\
(X\Lambda X^T)_{k,\ell} \le 0 & k \ne \ell & \text{(b)} \\
\Lambda = \text{diag}(0, \lambda_2, \dots, \lambda_N) \ge 0 & \text{(c)} \\
\text{tr}(\Lambda) = N \in \mathbb{R}_+^+ & \text{(d)}\n\end{cases}
$$

- **Learn** $X \Lambda X^T$ instead of L
- \triangleright Y are assumed to be noisy version of some true graph vectors XH
- \blacktriangleright H stands for the graph Fourier transform of the true graph vectors

$$
\min_{H, X, \Lambda} \|Y - XH\|_F^2 + \alpha \| \Lambda^{1/2} H \|_F^2 + \beta \|H\|_S
$$
\n
$$
\int X^{\mathsf{T}} X = I_N, x_1 = \frac{1}{\sqrt{N}} 1_N \tag{a}
$$

s.t.
$$
\begin{cases}\n(\angle \wedge \wedge^T)_{k,\ell} \leq 0 & k \neq \ell \\
(\angle \wedge \wedge^T)_{k,\ell} \leq 0 & k \neq \ell \\
\Lambda = \text{diag}(0, \lambda_2, \dots, \lambda_N) \succeq 0 & \text{(c)} \\
\text{tr}(\Lambda) = N \in \mathbb{R}^+_{+} & \text{(d)}\n\end{cases}
$$

- \blacktriangleright $||Y XH||_F^2$ stands for the reconstruction error
- \blacktriangleright $\|\Lambda^{1/2}H\|_F^2$ controls the smoothness of the approximation XH
- $\|H\|_S = \|H\|_{2,0}$ or $\|H\|_{2,1}$ enforces the GFT to be 0 at the same dimensions
- \triangleright α and β are positive hyperparameters

$$
\min_{H,X,\Lambda} \|Y - XH\|_F^2 + \alpha \|\Lambda^{1/2} H\|_F^2 + \beta \|H\|_S
$$

s.t.
$$
\begin{cases} \lambda^T X = I_N, x_1 = \frac{1}{\sqrt{N}} \mathbf{1}_N & \text{(a)}\\ (X \Lambda X^T)_{k, \ell} \leq 0 & k \neq \ell & \text{(b)}\\ \Lambda = \text{diag}(0, \lambda_2, \dots, \lambda_N) \succeq 0 & \text{(c)} \end{cases}
$$

$$
\left\{\n\begin{array}{l}\n\text{tr}(\Lambda) = N \in \mathbb{R}_+^+,\n\end{array}\n\right.\n\quad (d)
$$

- \blacktriangleright $||Y XH||_F^2$ stands for the reconstruction error
- \blacktriangleright $\|\Lambda^{1/2}H\|_F^2$ controls the smoothness of the approximation XH
- $\parallel H \parallel_s = \frac{||H||_{2,0}}{||H||_{2,1}}$ enforces the GFT to be 0 at the same dimensions
- \triangleright α and β are positive hyperparameters

$$
\min_{H,X,\Lambda} ||Y - XH||_F^2 + \alpha ||\Lambda^{1/2}H||_F^2 + \beta ||H||_S
$$
\ns.t.\n
$$
\begin{cases}\nX^T X = I_N, x_1 = \frac{1}{\sqrt{N}} \mathbf{1}_N & \text{(a)} \\
(X\Lambda X^T)_{k,\ell} \le 0 & k \ne \ell & \text{(b)} \\
\Lambda = \text{diag}(0, \lambda_2, \dots, \lambda_N) \ge 0 & \text{(c)} \\
\text{tr}(\Lambda) = N \in \mathbb{R}_+^+ & \text{(d)}\n\end{cases}
$$

- \blacktriangleright $||Y XH||_F^2$ stands for the reconstruction error
- \blacktriangleright $\|\Lambda^{1/2}H\|_F^2$ controls the smoothness of the approximation XH
- $\parallel \mathbf{H} \parallel_{S} = \|\mathbf{H}\|_{2,0}$ or $\|\mathbf{H}\|_{2,1}$ enforces the GFT to be 0 at the same dimensions
- $\triangleright \alpha$ and β are positive hyperparameters that controls smoothness and bandlimitedness
Optimization program

$$
\min_{H,X,\Lambda} ||Y - XH||_F^2 + \alpha ||\Lambda^{1/2}H||_F^2 + \beta ||H||_S
$$
\ns.t.\n
$$
\begin{cases}\nX^T X = I_N, x_1 = \frac{1}{\sqrt{N}} \mathbf{1}_N & \text{(a)} \\
(X\Lambda X^T)_{k,\ell} \le 0 & k \ne \ell & \text{(b)} \\
\Lambda = \text{diag}(0, \lambda_2, \dots, \lambda_N) \ge 0 & \text{(c)} \\
\text{tr}(\Lambda) = N \in \mathbb{R}_+^+ & \text{(d)}\n\end{cases}
$$

- \blacktriangleright $||Y XH||_F^2$ stands for the reconstruction error
- \blacktriangleright $\|\Lambda^{1/2}H\|_F^2$ controls the smoothness of the approximation XH
- \blacksquare \blacksquare $\Vert H \Vert_2 = \Vert H \Vert_{2,0}$ or $\Vert H \Vert_{2,1}$ enforces the GFT to be 0 at the same dimensions
- $\triangleright \alpha$ and β are positive hyperparameters that controls smoothness and bandlimitedness
- (a), (b) and (c) ensure $X\Lambda X^{T}$ to be a Laplacian
- \blacktriangleright (d) makes sure the graph has edges

Optimization program

$$
\min_{H,X,\Lambda} ||Y - XH||_F^2 + \alpha ||\Lambda^{1/2}H||_F^2 + \beta ||H||_S
$$
\ns.t.\n
$$
\begin{cases}\nX^T X = I_N, x_1 = \frac{1}{\sqrt{N}} \mathbf{1}_N & \text{(a)} \\
(X\Lambda X^T)_{k,\ell} \le 0 & k \ne \ell & \text{(b)} \\
\Lambda = \text{diag}(0, \lambda_2, \dots, \lambda_N) \succeq 0 & \text{(c)} \\
\text{tr}(\Lambda) = N \in \mathbb{R}_+^+ & \text{(d)}\n\end{cases}
$$

- \blacktriangleright $||Y XH||_F^2$ stands for the reconstruction error
- \blacktriangleright $\|\Lambda^{1/2}H\|_F^2$ controls the smoothness of the approximation XH
- \blacksquare \blacksquare $\Vert H \Vert_2 = \Vert H \Vert_{2,0}$ or $\Vert H \Vert_{2,1}$ enforces the GFT to be 0 at the same dimensions
- $\triangleright \alpha$ and β are positive hyperparameters that controls smoothness and bandlimitedness
- (a), (b) and (c) ensure $X\Lambda X^{T}$ to be a Laplacian
- \blacktriangleright (d) makes sure the graph has edges

[Introduction](#page-1-0) [Network anomaly detection](#page-14-0) [Graph Learning](#page-24-0) [Temporal Ising](#page-44-0) [Conclusion](#page-57-0) [Background](#page-25-0) [Problem Statement](#page-27-0) [Optimization](#page-32-0) [Experiments](#page-40-0)

Solving the program (overview)

- \triangleright Optimization program not convex $+$ very difficult to updates all variables directly −→ Use block-coordinate descent
- ▶ Other problem: constraint (b) $(X \Lambda X^T)_{kl}$ \leq 0 difficult to handle at the X-step → Solution: IGL-3SR and FGL-3SR [Le Bars et al., ICASSP 2019, Humbert et al., JMLR 2021]
- \triangleright Both relax (b) and use block-coordinate descent over X, Λ and H

$$
\min_{H,X,\Lambda} ||Y - XH||_F^2 + \alpha ||\Lambda^{1/2}H||_F^2 + \beta ||H||_S
$$
\n
$$
\text{s.t.} \quad\n\begin{cases}\nX^T X = I_N, x_1 = \frac{1}{\sqrt{N}} \mathbf{1}_N & \text{(a)} \\
(X\Lambda X^T)_{k,\ell} \leq 0 & k \neq \ell & \text{(b)} \\
\Lambda = \text{diag}(0, \lambda_2, \dots, \lambda_N) \geq 0 & \text{(c)} \\
\text{tr}(\Lambda) = N \in \mathbb{R}_+^+\n\end{cases}
$$

[Introduction](#page-1-0) [Network anomaly detection](#page-14-0) [Graph Learning](#page-24-0) [Temporal Ising](#page-44-0) [Conclusion](#page-57-0) [Background](#page-25-0) [Problem Statement](#page-27-0) [Optimization](#page-32-0) [Experiments](#page-40-0)

Solving the program (overview)

- \triangleright Optimization program not convex $+$ very difficult to updates all variables directly −→ Use block-coordinate descent
- ▶ Other problem: constraint (b) $(X \Lambda X^T)_{kl}$ \leq 0 difficult to handle at the X-step → Solution: IGL-3SR and FGL-3SR [Le Bars et al., ICASSP 2019, Humbert et al. JMLR 2021]
- \triangleright Both relax (b) and use block-coordinate descent over X, Λ and H

Synthetic data

- ▶ Large simulation study in [Le Bars et al., ICASSP 2019, Humbert et al., JMLR 2021]
- ▶ True graphs: Random Geometric or Erdös-Renyi
- \blacktriangleright Y sampled via factor analysis model
- \triangleright Comparison with two GSP baselines: \rightarrow GL-SigRep (Dong *et al.* 2016 [\[5\]](#page-61-0)): Only smoothness
	- \rightarrow ESA-GL (Sardellitti et al. 2019 [\[18\]](#page-62-0)): Bandlimitedness

Synthetic data

- ▶ Large simulation study in [Le Bars et al., ICASSP 2019, Humbert et al., JMLR 2021]
- **True graphs: Random Geometric or Erdös-Renyi**
- \blacktriangleright Y sampled via factor analysis model
- \triangleright Comparison with two GSP baselines: \rightarrow GL-SigRep (Dong *et al.* 2016 [\[5\]](#page-61-0)): Only smoothness \rightarrow ESA-GL (Sardellitti et al. 2019 [\[18\]](#page-62-0)): Bandlimitedness

Results and conclusion

- \blacktriangleright IGL-3SR outperforms baselines and FGL-3SR in terms of true graph recovery
- It is very slow, not practical for ≥ 20 nodes
- \triangleright FGL-3SR is a good compromise between graph recovery and time before convergence

Synthetic data - Results

[Introduction](#page-1-0) [Network anomaly detection](#page-14-0) [Graph Learning](#page-24-0) [Temporal Ising](#page-44-0) [Conclusion](#page-57-0) [Background](#page-25-0) [Problem Statement](#page-27-0) [Optimization](#page-32-0) [Experiments](#page-40-0)

A real-world illustration

- \blacktriangleright Temperature data in Brittany (Chepuri et al. 2017 [\[4\]](#page-61-1))
- $N = 32$ weather station
- \triangleright spectral clustering to ascess the quality
- \blacktriangleright n = 744 measurements
- \triangleright $\alpha = 10^{-4}$, β s.t 2-bandlimited

- (a) A measurement example and the learned graph. (b) Spectral clustering with the learned graph.
- \triangleright Coherent with the spatial distribution. Splits the north from the south of Brittany

Part 3

-

Detecting changes in the graph structure of a varying Ising model

Background

Context

- \blacktriangleright Probabilistic modeling, the data come from a Markov Random Field (MRF)
- \blacktriangleright Binary vector data: Ising model
- \triangleright Change-point detection with *unknown* number of change-points
- \blacktriangleright Related works:
	- Detection in Gaussian graphical models (Gibberd and Nelson, 2017 [\[8\]](#page-61-2))
	- Detection in Ising with known number of change-points (Roy et al. 2017 [\[17\]](#page-62-1))

Background

Context

- \blacktriangleright Probabilistic modeling, the data come from a Markov Random Field (MRF)
- \blacktriangleright Binary vector data: Ising model
- \triangleright Change-point detection with *unknown* number of change-points
- \blacktriangleright Related works:
	- Detection in Gaussian graphical models (Gibberd and Nelson, 2017 [\[8\]](#page-61-2))
	- Detection in Ising with known number of change-points (Roy et al. 2017 [\[17\]](#page-62-1))

Ising model

Let $G = (V, E)$ and $\Omega \in \mathbb{R}^{p \times p}$ symmetric whose non-zero elements correspond to the set of edges E. The probability distribution function (pdf) of an Ising random vector X :

$$
\mathbb{P}_{\Omega}(X=x)=\frac{1}{Z(\Omega)}\exp\left\{\sum_{a
$$

- \blacktriangleright $Z(\Omega)$: Normalizing constant
- $\blacktriangleright x \in \{-1, 1\}^p$

Model and objectives

Piece-wise constant Ising model

- \triangleright Time-series of *n* independent Ising vectors *X*^(*i*) with parameter Ω^(*i*)
- \blacktriangleright Piecewise constant evolving structure:

$$
\Omega^{(i)} = \sum_{k=0}^{D} \Theta^{(k+1)} \mathbf{1} \{ T_k \leq i < T_{k+1} \}
$$

 $T_0 = 1$ and $T_{D+1} = n + 1$.

- \triangleright D change-points appearing a time T_1, \ldots, T_D
- $D + 1$ sub-model parametrized by $\Theta^{(1)}, \ldots, \Theta^{(D+1)}$

Model and objectives

Piece-wise constant Ising model

- \triangleright Time-series of *n* independent Ising vectors *X*^(*i*) with parameter Ω^(*i*)
- \blacktriangleright Piecewise constant evolving structure:

$$
\Omega^{(i)} = \sum_{k=0}^{D} \Theta^{(k+1)} \mathbf{1} \{ T_k \leq i < T_{k+1} \}
$$

$$
T_0 = 1
$$
 and $T_{D+1} = n + 1$.

- \triangleright D change-points appearing a time T_1, \ldots, T_D
- $D + 1$ sub-model parametrized by $\Theta^{(1)}, \ldots, \Theta^{(D+1)}$

Objectives:

- Elearn for each $X^{(i)}$ its associated parameter $\Omega^{(i)}$
- Infer the number of change-points D and their time instances

[Introduction](#page-1-0) [Network anomaly detection](#page-14-0) [Graph Learning](#page-24-0) [Temporal Ising](#page-44-0) [Conclusion](#page-57-0) [Background](#page-45-0) [Model and learning](#page-47-0) [Theory](#page-53-0) [Experiments](#page-56-0)

Learning

 \triangleright Can we use standard maximum likelihood approach ?

 \rightarrow No, due to the intractability of $Z(\cdot)$ and the high-dimensional scenario

Instead, penalized neighborhood selection strategy: TVI-FL [Le Bars et al., ICML 2020]

TVI-FL For each node $j = 1, \ldots, p$, we solve $\widehat{\omega}_j = \operatorname*{argmin}_{\omega \in \mathbb{R}^{p-1} \times n} \mathcal{L}_j(\omega) + p e n_{\lambda_1, \lambda_2}(\omega)$

A column $\widehat{\omega}_j^{(i)}$ of $\widehat{\omega}_j$ corresponds to the *j*-th row/column of $\widehat{\Omega}^{(i)}$ \rightarrow The neighborhood's weights of node *j* at time *i*

Learning

TVI-FL

For each node $j = 1, \ldots, p$, we solve

$$
\widehat{\omega}_j = \underset{\omega \in \mathbb{R}^{p-1 \times n}}{\text{argmin}} \mathcal{L}_j(\omega) + \text{pen}_{\lambda_1, \lambda_2}(\omega)
$$

$$
\mathcal{L}_{j}(\omega) \triangleq -\sum_{i=1}^{n} \log \left(\mathbb{P}_{\omega^{(i)}}(x_{j}^{(i)} | x_{j}^{(i)}) \right)
$$

=
$$
\sum_{i=1}^{n} \log \left\{ \exp \left(\omega^{(i) \top} x_{j}^{(i)} \right) + \exp \left(-\omega^{(i) \top} x_{j}^{(i)} \right) \right\} - \sum_{i=1}^{n} x_{j}^{(i)} \omega^{(i) \top} x_{j}^{(i)}
$$

 \triangleright Conditional log-likelihood of node *j* knowing the other nodes values

 \blacktriangleright Convex function

Learning

TVI-FL

For each node $j = 1, \ldots, p$, we solve

$$
\widehat{\omega}_j = \underset{\omega \in \mathbb{R}^{p-1 \times n}}{\text{argmin}} \mathcal{L}_j(\omega) + \text{pen}_{\lambda_1, \lambda_2}(\omega)
$$

$$
pen_{\lambda_1, \lambda_2}(\omega) \triangleq \lambda_1 \sum_{i=2}^n ||\omega^{(i)} - \omega^{(i-1)}||_2 + \lambda_2 \sum_{i=1}^n ||\omega^{(i)}||_1
$$

- $\blacktriangleright \lambda_1$ and λ_2 are positive hyperparameters
- The first term fused penalty controls the piece-wise constant structure and the number of change-points
- \blacktriangleright The second term lasso penalty imposes sparsity in the learnt neighborhood

Learning

TVI-FL

For each node $j = 1, \ldots, p$, we solve

$$
\widehat{\omega}_j = \underset{\omega \in \mathbb{R}^{p-1 \times n}}{\text{argmin}} \mathcal{L}_j(\omega) + \text{pen}_{\lambda_1, \lambda_2}(\omega)
$$

$$
pen_{\lambda_1, \lambda_2}(\omega) \triangleq \lambda_1 \sum_{i=2}^n ||\omega^{(i)} - \omega^{(i-1)}||_2 + \lambda_2 \sum_{i=1}^n ||\omega^{(i)}||_1
$$

- \blacktriangleright λ_1 and λ_2 are positive hyperparameters
- \triangleright The first term fused penalty controls the piece-wise constant structure and the number of change-points
- \triangleright The second term lasso penalty imposes sparsity in the learnt neighborhood

In conclusion:

- \blacktriangleright Non-differentiable but convex function
- \blacktriangleright TVI-FL solvable by convex programming tools and software
- Set of estimated change-points : $\widehat{\mathcal{D}} = \left\{ \widehat{T}_k \in \{2, \ldots, n\} : ||\widehat{\omega}_j^{(\widehat{T}_k)} \widehat{\omega}_j^{(\widehat{T}_k-1)}||_2 \neq 0 \right\}$

Theoretical analysis

Assumptions:

- ► (A1) $\exists \phi_{\min} > 0$ and $\phi_{\max} < \infty$ s.t. $\phi_{\min} \leq \Lambda_{\min} \left(\mathbb{E}_{\Theta^{(k)}} [X_{\setminus i} X_{\setminus j}^{\top}] \right)$ and $\phi_{\max} \geq \Lambda_{\max} \left(\mathbb{E}_{\Theta^{(k)}} [X_{\setminus i} X_{\setminus j}^{\top}] \right)$
- ▶ (A2) There exists $M \geq 0$ s.t. $\max_{k \in [D+1]} ||\theta_j^{(k)}||_2 \leq M$
- ► (A3) For all $k = 1, ..., D$, $T_k = |n\tau_k|$ with unknown $\tau_k \in [0, 1]$

Theoretical analysis

Assumptions:

► (A1) $\exists \phi_{\min} > 0$ and $\phi_{\max} < \infty$ s.t. $\phi_{\min} \leq \Lambda_{\min} \left(\mathbb{E}_{\Theta^{(k)}} [X_{\setminus i} X_{\setminus j}^{\top}] \right)$ and $\phi_{\max} \geq \Lambda_{\max} \left(\mathbb{E}_{\Theta^{(k)}} [X_{\setminus i} X_{\setminus j}^{\top}] \right)$

• **(A2)** There exists
$$
M \ge 0
$$
 s.t. $\max_{k \in [D+1]} ||\theta_j^{(k)}||_2 \le M$

 \triangleright (A3) For all $k = 1, ..., D$, $T_k = |n\tau_k|$ with unknown $\tau_k \in [0, 1]$

Theorem - Change-Point consistency

Consider (A1-A3) and let $\{\delta_n\}_{n>1}$ be a non-increasing sequence that converges to 0 and s.t. $n\delta_n \to \infty$. If $\hat{D} = D$, we have:

$$
\mathbb{P}(\max_{k=1,\ldots,D}|\hat{T}_k-T_k|\leq n\delta_n)\underset{n\to\infty}{\longrightarrow}1
$$

Drawback: $\widehat{D} = D$ difficult to verify

Change-Point consistency 2

$$
\blacktriangleright d(A||B) = \sup_{b \in B} \inf_{a \in A} |b - a|
$$

Proposition

Under the same conditions, if $D \leq \widehat{D}$ then:

$$
\mathbb{P}(d(\widehat{\mathcal{D}}\|\mathcal{D})\leq n\delta_n)\underset{n\to\infty}{\longrightarrow}1
$$

- \triangleright Overestimated number of change-points
- I Asymptotically, all the true change-points belong to the estimated set of change-points

Voting data set

- \triangleright Votes (yes/no) in Illinois house of representatives (Lewis et al. 2020 [\[13\]](#page-62-2))
- 18 seats \rightarrow 18 nodes
- \blacktriangleright 1264 votes
- ▶ 114-th and 115-th US Congresses (2015-2019)
- \blacktriangleright λ_1 and λ_2 minimizing AIC

Results:

- **Party structure: Republican vs Democrat**
- \blacktriangleright Biggest change-point: End of congress
- Seat 10 change party
- \triangleright Brings knowledge: seat 10 is a super-collaborator

Conclusion

Conclusion

A diverse work ...

- \blacktriangleright Anomaly detection, change-point detection, graph learning, optimization
- \triangleright GSP framework, probabilistic framework
- In Not discussed: robust kernel density estimation [Le Bars et al., 2020]
- ▶ Codes available online at github.com/BatisteLB

... with open questions

- \triangleright Online version for change-point detection of part 3
- \blacktriangleright Better theoretical understanding: consistent graph recovery?
- Improve optimization of part 2 and 3
- \blacktriangleright Make a better use of the graph in part 1

What about my postdoc?

Fully decentralized federated learning

- \triangleright Decentralized algorithms depend on a graph topology \rightarrow also impacts the convergence!
- \blacktriangleright Impact increases when data are non iid
- \triangleright Objective: learning data-dependent graphs that can speed-up convergence

Learning with privacy

- \blacktriangleright Learning graphs under privacy constraints
- \blacktriangleright Privately learning the graph proposed above
- \blacktriangleright Markov Random Fields inference under (local) differential privacy

Publications and preprints

- ▶ B. Le Bars, and A. Kalogeratos. A Probabilistic Framework to Node-level Anomaly Detection in Communication Networks. In 2019 IEEE Conference on Computer Communications (INFOCOM), 2019
- ▶ B. Le Bars, P. Humbert, L. Oudre, and A. Kalogeratos. Learning Laplacian Matrix from Bandlimited Graph Signals. In 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019
- ▶ B. Le Bars, P. Humbert, A. Kalogeratos, and N. Vayatis. Learning the piece-wise constant graph structure of a varying Ising model. In 2020 International Conference on Machine Learning (ICML), 2020
- B. Le Bars, P. Humbert, L. Minvielle, and N. Vayatis. Robust Kernel Density Estimation with Median-of-Means principle. Arxiv preprint, 2020
- **P. Humbert, B. Le Bars, L. Oudre, A. Kalogeratos, and N. Vayatis. Learning Laplacian Matrix from Graph** Signals with Sparse Spectral Representation. In Journal of Machine Learning Research (JMLR), 2021

References

- [1] Bybee, L. and Atchadé, Y. (2018). Change-point computation for large graphical models: a scalable algorithm for gaussian graphical models with change-points. J. of Machine Learning Research, 19(1):440–477.
- [2] Chen, S., Sandryhaila, A., and Kovačević, J. (2015). Sampling theory for graph signals. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3392–3396.
- [3] Chen, Y., Mao, X., Ling, D., and Gu, Y. (2018). Change-point detection of gaussian graph signals with partial information. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3934–3938. IEEE.
- [4] Chepuri, S. P., Liu, S., Leus, G., and Hero, A. O. (2017). Learning sparse graphs under smoothness prior. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pages 6508–6512.
- [5] Dong, X., Thanou, D., Frossard, P., and Vandergheynst, P. (2016). Learning laplacian matrix in smooth graph signal representations. Trans. Signal Processing, 64(23):6160–6173.
- [6] Egilmez, H. E. and Ortega, A. (2014). Spectral anomaly detection using graph-based filtering for wireless sensor networks. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1085–1089. IEEE.
- [7] Friedman, L. Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432–441.
- [8] Gibberd, A. J. and Nelson, J. D. (2017). Regularized estimation of piecewise constant gaussian graphical models: The group-fused graphical lasso. Journal of Computational and Graphical Statistics, 26(3):623–634.
- [9] Goel, S., Kane, D. M., and Klivans, A. R. (2019). Learning ising models with independent failures. In Conference on Learning Theory, pages $1449-1469$.
- [10] Hong, Y. (2013). On computing the distribution function for the poisson binomial distribution. Computational Statistics $\&$ Data Analysis, 59:41–51.
- [11] Ji, T., Yang, D., and Gao, J. (2013). Incremental local evolutionary outlier detection for dynamic social networks. In Proc. of the Joint European Conf. on Machine Learning and Knowledge Discovery in Databases, pages 1–15. Springer.

References

- [12] Kolar, M., Song, L., Ahmed, A., and Xing, E. P. (2010). Estimating time-varying networks. The Annals of Applied Statistics, 4(1):94–123.
- [13] Lewis, J. B., Poole, K., Rosenthal, H., Boche, A., Rudkin, A., and Sonnet, L. (2020). Voteview: Congressional roll-call votes database. https://voteview.com/.
- [14] Londschien, M., Kovács, S., and Bühlmann, P. (2020). Change point detection for graphical models in the presence of missing values. Journal of Computational and Graphical Statistics, pages 1–32.
- [15] Neil, J., Hash, C., Brugh, A., Fisk, M., and Storlie, C. (2013). Scan statistics for the online detection of locally anomalous subgraphs. Technometrics, 55(4):403–414.
- [16] Ravikumar, P., Wainwright, M. J., and Lafferty, J. D. (2010). High-dimensional ising model selection using l1-regularized logistic regression. The Annals of Statistics, 38(3):1287–1319.
- [17] Roy, S., Atchadé, Y., and Michailidis, G. (2017). Change point estimation in high dimensional markov random-field models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(4):1187–1206.
- [18] Sardellitti, S., Barbarossa, S., and Di Lorenzo, P. (2019). Graph topology inference based on sparsifying transform learning. IEEE Transactions on Signal Processing, 67(7):1712–1727.
- [19] Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., and Williamson, R. C. (2001). Estimating the support of a high-dimensional distribution. Neural Computation, 13(7):1443–1471.
- [20] Yamada, K., Tanaka, Y., and Ortega, A. (2020). Time-varying graph learning with constraints on graph temporal variation. arXiv preprint arXiv:2001.03346.

Results bilateral

(a) Abnormal Base Station - Bilateral intervals

(b) Normal Base Station - Bilateral intervals

FGL-3SR

H-step

$$
\min_{H} ||Y - XH||_F^2 + \alpha ||\Lambda^{1/2}H||_F^2 + \beta ||H||_S
$$

- \blacktriangleright No constraint
- \blacktriangleright Equivalent to multiple sparse linear regression problems
- \blacktriangleright Closed-form solutions
- \blacksquare $\Vert \cdot \Vert_s = \Vert \cdot \Vert_{2,0}$: hard-thresholding
- \blacksquare $\Vert \cdot \Vert_s = \Vert \cdot \Vert_{2,1}$: solf-thresholding

FGL-3SR

 X -step $\min_{X} ||Y - XH||_F^2$ s.t. $X^T X = I_N, x_1 = \frac{1}{\sqrt{N}}$ (a) \blacktriangleright (b) is out ▶ Non-convex but has a closed-form: $X^{(t+1)} = X^{(t)} \begin{bmatrix} 1 & \mathbf{0}_{N-1}^{\mathsf{T}} \ \mathbf{0}_{N-1} & PQ^{\mathsf{T}} \end{bmatrix}$, where the columns in P and Q are the left- and right-singular vectors of $(X^{(t+1)\mathsf{T}} Y H^\mathsf{T})_{2:,2:}$

FGL-3SR

→ Need to finish by this step

Synthetic data graph learning - Results

Synthetic data

- \blacktriangleright n = 100, p = 20, 2 Change-Points
- ▶ Random Regular Graphs with degree $\in \{2, 3, 4\}$
- ▶ Competitor: Tesla (Kolar et al. [\[12\]](#page-62-3))
- \blacktriangleright Metrics, F_1 -score and *h*-score:

$$
h(\mathcal{D},\widehat{\mathcal{D}}) \triangleq \frac{1}{n} \max \left\{ \max_{t \in \mathcal{D}} \min_{\hat{t} \in \widehat{\mathcal{D}}} |t - \hat{t}|, \max_{\hat{t} \in \widehat{\mathcal{D}}} \min_{t \in \mathcal{D}} |t - \hat{t}| \right\}.
$$

Figure: Average F_1 -score obtained when the *h*-score is below a certain threshold.

- ▶ Outperforming Telsa, not designed for proper CP detection
- \triangleright Complete results in the main paper

Sigfox data set TVI-FL

- \blacktriangleright Same data set as in part 1
- \blacktriangleright λ_1 and λ_2 selected via AIC
- Several change-points, but an important one around the 30th day

Figure: (Left) A graph learned before the BS failure, recorded on the 30th day. (Right) A graph learned after this day

Robust Kernel Density Estimator

Classical framework

- $\blacktriangleright \{X_1, \ldots, X_n\}$
- $\blacktriangleright \forall i = 1, \ldots, n, X_i \sim f$
- \blacktriangleright Kernel Density Estimator (KDE):

$$
\hat{f}_n(x) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right)
$$

Outlier framework

$$
\blacktriangleright \{X_1,\ldots,X_n\} = \mathcal{O} \cup \mathcal{I}
$$

$$
\blacktriangleright \forall i \in \mathcal{I}, X_i \sim f
$$

- \blacktriangleright B_1, \ldots, B_S : random partition of $[n]$
- \blacktriangleright $n_s = |B_s|$
- \blacktriangleright Median-of-Means KDE: $\hat{f}_\mathcal{M o \mathcal{M}}(x_0) \propto \mathcal{M}$ edian $\left(\hat{f}_{n_1}(x_0), \dots, \hat{f}_{n_S}(x_0)\right)$

Robust Kernel Density Estimator

