Contributions to graph learning and change point detection Magnet seminar

Batiste Le Bars

Magnet, Inria Lille Before: Centre Borelli, ENS Paris-Saclay

Jeudi 13 Janvier 2022

Industrial context

What is Sigfox?

- ► Internet-of-Things network
- 28k Base Stations (BS)

- A message can be received by all nearby BS
- ► ~ 56M messages/day
- ▶ 72 countries

Industrial context

What is Sigfox?

- ► Internet-of-Things network
- 28k Base Stations (BS)

- A message can be received by all nearby BS
- ➤ ~ 56M messages/day
- ▶ 72 countries

Objective

Detect BS failure using the data collected in the network

Industrial context

What is Sigfox?

- ► Internet-of-Things network
- 28k Base Stations (BS)



- A message can be received by all nearby BS
- ➤ ~ 56M messages/day
- 72 countries

Objective

Detect BS failure using the data collected in the network

Which data?

- Only reception information
- For each message, which BS received it (1) or not (0)

	BS#1	BS#2	BS#3	
Message #1	0	1	1	
Message #2	1	0	0	
Message #3	0	0	1	

- "Pure" data: almost no processing
- Collected at the level of nodes in a network: Graph vectors!

General context

Graph vectors

- ▶ Let $G = (V, \mathcal{E})$ be a graph, $y : V \to \mathbb{R}$ is a graph vector
- ► Also referred as graph signals or graph data
- Examples: Sigfox data, Social network data, EEG etc.

General context

Graph vectors

- ▶ Let $G = (V, \mathcal{E})$ be a graph, $y : V \to \mathbb{R}$ is a graph vector
- Also referred as graph signals or graph data
- Examples: Sigfox data, Social network data, EEG etc.

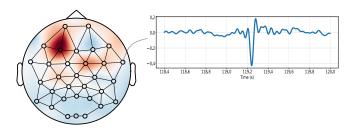


Figure: Electroencephalogram (EEG) seen as a set of graph data

General context

Graph vectors

- Let $G = (\mathcal{V}, \mathcal{E})$ be a graph, $y : \mathcal{V} \to \mathbb{R}$ is a graph vector
- Also referred as graph signals or graph data
- Examples: Sigfox data, Social network data, EEG etc.

Problems

- ▶ Graph known: → improve the performance of your learning/statistical tasks
- ▶ Graph unknown:
 → learn it to better understand the data

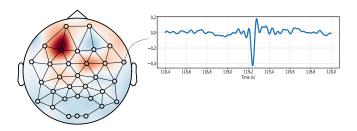
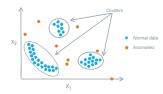


Figure: Electroencephalogram (EEG) seen as a set of graph data

Objectives and motivations

Event detection for graph vectors

- Anomaly or Change-point detection
- ► Motivated by Sigfox application (BS failure)
- Applications: network security, sensor's breakdown, etc.



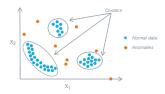
Objectives and motivations

Event detection for graph vectors

- Anomaly or Change-point detection
- ► Motivated by Sigfox application (BS failure)
- Applications: network security, sensor's breakdown, etc.

Graph learning

- Infer the relationship between variables (similarity, dependency, etc.)
- Visualize and model the vectors. Apply graph-based learning algorithms
- Applications: gene co-expression, movie recommendation, etc.





Objectives and motivations

Event detection for graph vectors

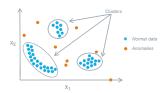
- Anomaly or Change-point detection
- ► Motivated by Sigfox application (BS failure)
- Applications: network security, sensor's breakdown, etc.

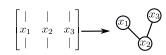
Graph learning

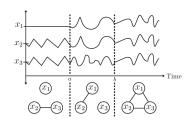
- Infer the relationship between variables (similarity, dependency, etc.)
- Visualize and model the vectors. Apply graph-based learning algorithms
- Applications: gene co-expression, movie recommendation, etc.

Detect changes in the underlying graph

- Combination of graph learning and change-point detection
- More difficult
- Keeps the advantages of the previous tasks







Related works

Event detection for graph vectors

- Use the graph to build features (Chen et al. 2018 [3], Egilmez et al. 2014 [6])
- Different levels of detection
 - \rightarrow node-level (Ji et al. 2013 [11]), subgraph-level (Neil et al. 2013 [15]), graph-level (Chen et al. 2018 [3])

Related works

Event detection for graph vectors

- Use the graph to build features (Chen et al. 2018 [3], Egilmez et al. 2014 [6])
- Different levels of detection
 - → node-level (Ji et al. 2013 [11]), subgraph-level (Neil et al. 2013 [15]), graph-level (Chen et al. 2018 [3])

Graph learning

- ► Statistical framework: estimating parameters of Markov Random Fields
 - → Gaussian model (Friedman et al. 2008 [7]), Ising model (Ravikumar et al. 2010 [16], Goel et al. 2019 [9])
- Graph signal processing framework
 - → Smoothness (Dong et al. 2016 [5]), sparsity of the graph spectral domain (Sardellitti et al. 2019 [18])

Related works

Event detection for graph vectors

- Use the graph to build features (Chen et al. 2018 [3], Egilmez et al. 2014 [6])
- Different levels of detection
 - → node-level (Ji et al. 2013 [11]), subgraph-level (Neil et al. 2013 [15]), graph-level (Chen et al. 2018 [3])

Graph learning

- ► Statistical framework: estimating parameters of Markov Random Fields
 - → Gaussian model (Friedman et al. 2008 [7]), Ising model (Ravikumar et al. 2010 [16], Goel et al. 2019 [9])
- ► Graph signal processing framework
 - → Smoothness (Dong et al. 2016 [5]), sparsity of the graph spectral domain (Sardellitti et al. 2019 [18])

Detect changes in the underlying graph

- Statistical framework (Roy et al. 2017 [17], Londschien et al. 2020 [17] [14])
- Graph signal processing framework (Yamada et al. 2020 [20])
- Known (Bybee and Atchadé, 2018 [1]) vs Unknown (Gibberd and Nelson, 2017 [8]) number of change-points

Outline

- 1. Node-level anomaly detection in networks: application to Sigfox
 - 2. Graph inference from smooth and bandlimited graph signals
- 3. Detecting changes in the graph structure of a varying Ising model
 - 4. Conclusion

Part 1

Node-level anomaly detection in networks: application to Sigfox

Model

Let N be the number of considered BS

Definition (Fingerprint)

The *fingerprint* of a Sigfox message is $X = (X_1, \dots, X_N) \in \{0, 1\}^N$, where $X_j = 1$ if BS j received the message, 0 otherwise

Assumption 1: Sigfox messages are independent random vectors

Model

Let N be the number of considered BS

Definition (Fingerprint)

The *fingerprint* of a Sigfox message is $X = (X_1, ..., X_N) \in \{0, 1\}^N$, where $X_j = 1$ if BS j received the message, 0 otherwise

Assumption 1: Sigfox messages are independent random vectors

Definition (Conditional probability function)

Let a BS $i \in [N]$, The conditional probability function of i is

$$\eta_i^*(x_{\setminus i}) \triangleq \mathbb{P}(X_i = 1 | X_{\setminus i} = x_{\setminus i}),$$

where $X_{\setminus j}$ is the vector X without its j-th component

Assumption 2: The conditional probability function of a BS j doesn't change over time

Objective and scoring function

Goal: Given a set $\mathcal{D}_n = \{X^{(i)}\}_{i=1}^n$ and its realization $\{x^{(i)}\}_{i=1}^n$, fix a BS $j \in [N]$ and determine if $m_j = \sum_{i=1}^n x_j^{(i)}$ is abnormally low

Assumption 3: We have access to a set of normal communication behaviors \mathcal{D}_{train}

Objective and scoring function

Goal: Given a set $\mathcal{D}_n = \{X^{(i)}\}_{i=1}^n$ and its realization $\{x^{(i)}\}_{i=1}^n$, fix a BS $j \in [N]$ and determine if $m_j = \sum_{i=1}^n x_j^{(i)}$ is abnormally low

Assumption 3: We have access to a set of normal communication behaviors \mathcal{D}_{train}

A natural scoring function

- Use values of the other BS
- lacksquare Knowing $X_{\backslash j}^{(i)}=x_{\backslash j}^{(i)}$, $M_j=\sum_{i=1}^n X_j^{(i)}$ is a Poisson Binomial distribution with parameter $\{\eta_j^*(x_{\backslash j}^{(i)})\}_{i=1}^n$
- Given η_j^* , its cumulative distribution function (cdf) $F_{M_j}(\cdot)$ can be computed efficiently (Hong, 2013 [10])

Objective and scoring function

Goal: Given a set $\mathcal{D}_n = \{X^{(i)}\}_{i=1}^n$ and its realization $\{x^{(i)}\}_{i=1}^n$, fix a BS $j \in [N]$ and determine if $m_j = \sum_{i=1}^n x_j^{(i)}$ is abnormally low

Assumption 3: We have access to a set of normal communication behaviors \mathcal{D}_{train}

A natural scoring function

- Use values of the other BS
- ► Knowing $X_{ij}^{(i)} = x_{ij}^{(i)}$, $M_j = \sum_{i=1}^n X_j^{(i)}$ is a Poisson Binomial distribution with parameter $\{\eta_j^*(x_{ij}^{(i)})\}_{i=1}^n$
- Given η_j^* , its cumulative distribution function (cdf) $F_{M_j}(\cdot)$ can be computed efficiently (Hong, 2013 [10])

Definition (Anomaly scoring function)

A natural score of abnormality for m_i is given by:

$$s(m_j) = \mathbb{P}(M_j > m_j) = 1 - F_{M_j}(m_j),$$

where close to 1 value means m_i stands in a low-density region (left-hand tail).

In practice we do not have access to η_i^* . What can be done?

A supervised-learning solution

Solution

- Learn $\hat{\eta}_j$, estimator of η_j^* , using a regression algorithm (logistic, random forest, etc.) over \mathcal{D}_{train}
- Use $\hat{\eta}_j$ instead of η_j^* to build F_{M_j} , and compute the previous anomaly score
- Fix a threshold above which m_j is considered abnormal (e.g. 0.99 or 0.95)

Algorithm: Regression-based anomaly detection

Input: \mathcal{D}_{train} , \mathcal{D}_n , node j, threshold s Regression algorithm: Regressor(\cdot) Output: 1 if anomaly, 0, otherwise

$$\begin{split} \hat{\eta} &\longleftarrow \text{Regressor}\Big(\mathcal{D}_{train} = \{\tilde{\mathbf{x}}_{\backslash j}^{(i)}, \tilde{\mathbf{x}}_{j}^{(i)}\}\Big) \\ \textbf{for } i = 1 \dots, n \, \textbf{do} \\ \hat{p}_{i} &\longleftarrow \hat{\eta}(\mathbf{x}_{\backslash j}^{(i)}) \\ \textbf{end for} \\ \hat{F} &\longleftarrow \text{PoiBin}\Big(\sum \mathbf{x}_{j}^{(i)}; \hat{p}_{j}^{(1)}, \dots, \hat{p}_{j}^{(n)}\Big) \\ \hat{\mathbf{s}} &\longleftarrow \max(\hat{F}, 1 - \hat{F}) \\ \textbf{if } \hat{\mathbf{s}} > s \, \textbf{then} \\ \text{Output 1: Abnormal node} \\ \textbf{else} \\ \text{Output 0: Normal node} \end{split}$$

end if

Sigfox application

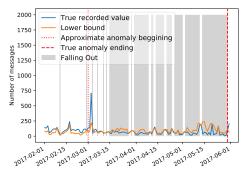
Dataset

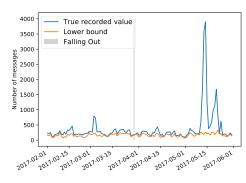
- 34 BS, 232000 messages over 5 months
- ► Training set: first month(~ 35000 messages)
- ▶ Daily prediction over the 4 other months: 120 testing data sets (~ 1600 messages/day in average)
- ▶ 1 failing BS, approximately from March, i.e. 30 normal days, 90 abnormal
- Dataset available online

Setup

- Regressor: Random forest from scikit-learn, by default hyperparameters (no tuning)
- ► Threshold fixed via CV over the training set s.t. False positive rate ~ 0.01
- Baseline: basic feature engineering + One-class SVM (Schölkopf et al. 2001 [19])

Results





(a) Abnormal Base Station

(b) Normal Base Station

Results (2)

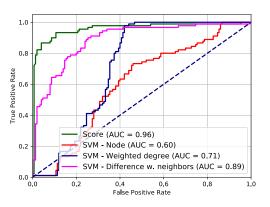


Figure: ROC curves and their respective AUC.

- Convincing results: the proposed approach seems adapted
- Larger-scale experiments, performed internally at Sigfox, corroborate those results
- ▶ A more general presentation of the method in [Le Bars and Kalogeratos, INFOCOM 2019]

Part 2

_

Graph inference from smooth and bandlimited graph signals

Background

Graph Signal Processing (GSP)

- Generalizes signal processing concepts for graph signals (smoothness, Fourier transform, sampling, filtering, etc.)
- Temporal signals and images are graph signals with specific graph (cycles and grid)
- Having access to the graph is a strong assumption: graph learning

Background

Graph Signal Processing (GSP)

- Generalizes signal processing concepts for graph signals (smoothness, Fourier transform, sampling, filtering, etc.)
- Temporal signals and images are graph signals with specific graph (cycles and grid)
- ► Having access to the graph is a strong assumption: graph learning

Definition (Graph Laplacian)

The graph Laplacian of a graph $G=(\mathcal{V},\mathcal{E})$ with weight matrix W and degree matrix D is the matrix L=D-W

Definition (Graph Fourier Transform)

Let $G=(\mathcal{V},\mathcal{E})$ and $L=X\Lambda X^{\mathsf{T}}$ be the eigenvalue decomposition of its Laplacian matrix. The Graph Fourier Transform (GFT) of a graph signal $y\in\mathbb{R}^p$ is given by

$$h = X^{\mathsf{T}} y$$

Goal: Learn the Laplacian *L* that best explains the structure of *n* graph signals $Y = [y^{(1)}, \dots, y^{(n)}]$ of size *N*.

▶ Need for structural assumptions that link *L* to *Y*

Goal: Learn the Laplacian *L* that best explains the structure of *n* graph signals $Y = [y^{(1)}, \dots, y^{(n)}]$ of size *N*.

- ▶ Need for structural assumptions that link L to Y
- **Assumptions:**
 - ► *G* is undirected and has a single connected component

Goal: Learn the Laplacian *L* that best explains the structure of *n* graph signals $Y = [y^{(1)}, \dots, y^{(n)}]$ of size *N*.

▶ Need for structural assumptions that link *L* to *Y*

Assumptions:

- ► *G* is undirected and has a single connected component
- ▶ The graph signals are **smooth** with respect to *G* i.e. $y^{(i)T}Ly^{(i)} = \frac{1}{2}\sum w_{kl}(y_k^{(i)} y_l^{(i)})^2$ is small

Goal: Learn the Laplacian *L* that best explains the structure of *n* graph signals $Y = [y^{(1)}, \dots, y^{(n)}]$ of size *N*.

▶ Need for structural assumptions that link *L* to *Y*

Assumptions:

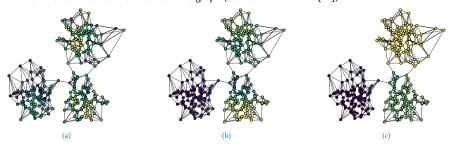
- ► *G* is undirected and has a single connected component
- ► The graph signals are **smooth** with respect to *G* i.e. $y^{(i)T}Ly^{(i)} = \frac{1}{2}\sum w_{kl}(y_k^{(i)} y_l^{(i)})^2$ is small
- ▶ They have a **bandlimited** spectrum i.e. $\forall i, h^{(i)} = X^T y^{(i)}$ has some zero-valued coefficients at same dimensions

Goal: Learn the Laplacian *L* that best explains the structure of *n* graph signals $Y = [y^{(1)}, \dots, y^{(n)}]$ of size *N*.

▶ Need for structural assumptions that link *L* to *Y*

Assumptions:

- ▶ *G* is undirected and has a single connected component
- ► The graph signals are **smooth** with respect to *G* i.e. $y^{(i)T}Ly^{(i)} = \frac{1}{2}\sum w_{kl}(y_k^{(i)} y_l^{(i)})^2$ is small
- ▶ They have a **bandlimited** spectrum i.e. $\forall i$, $h^{(i)} = X^T y^{(i)}$ has some zero-valued coefficients at same dimensions
 - → Basic assumption of sampling methods (Chen et al. 2015 [2])
 - → Different notion of smoothness
 - → Also relies to the cluster structure of the graph (Sardellitti et al. 2019 [18])



 $\textbf{Figure:} \ \textbf{Three smooth graph signals} \ (\textit{N} = 300) \ \textbf{with decreasing bandlimitedness:} \ (\textbf{a}) \ \textbf{150-sparse,} \ (\textbf{b}) \ \textbf{6-sparse,} \ (\textbf{c}) \ \textbf{3-sparse.}$

$$\min_{H,X,\Lambda} ||Y - XH||_F^2 + \alpha ||\Lambda^{1/2}H||_F^2 + \beta ||H||_S$$
s.t.
$$\begin{cases} X^T X = I_N, x_1 = \frac{1}{\sqrt{N}} \mathbf{1}_N & \text{(a)} \\ (X\Lambda X^T)_{k,\ell} \le 0 & k \ne \ell & \text{(b)} \\ \Lambda = \operatorname{diag}(0, \lambda_2, \dots, \lambda_N) \succeq 0 & \text{(c)} \\ \operatorname{tr}(\Lambda) = N \in \mathbb{R}_+^+ & \text{(d)} \end{cases}$$

- Learn $X\Lambda X^{T}$ instead of L
- Y are assumed to be noisy version of some true graph vectors XH
- ► *H* stands for the graph Fourier transform of the true graph vectors

$$\min_{H,X,\Lambda} \frac{\|Y - XH\|_F^2 + \alpha \|\Lambda^{1/2}H\|_F^2 + \beta \|H\|_S}{\|X^TX = I_N, x_1 = \frac{1}{\sqrt{N}} \mathbf{1}_N \qquad (a) \\ (X\Lambda X^T)_{k,\ell} \le 0 \quad k \ne \ell \qquad (b) \\ \Lambda = \operatorname{diag}(0, \lambda_2, \dots, \lambda_N) \succeq 0 \quad (c) \\ \operatorname{tr}(\Lambda) = N \in \mathbb{R}_+^+ \qquad (d)$$

- $\|Y XH\|_F^2$ stands for the reconstruction error
- $\|\Lambda^{1/2}H\|_F^2$ controls the smoothness of the approximation XH
- $\|H\|_S = \|H\|_{2,0}$ or $\|H\|_{2,1}$ enforces the GFT to be 0 at the same dimensions
- ightharpoonup lpha and eta are positive hyperparameters

$$\min_{H,X,\Lambda} ||Y - XH||_F^2 + \alpha ||\Lambda^{1/2}H||_F^2 + \beta ||H||_S$$
s.t.
$$\begin{cases} X^T X = I_N, x_1 = \frac{1}{\sqrt{N}} \mathbf{1}_N & \text{(a)} \\ (X\Lambda X^T)_{k,\ell} \le 0 & k \ne \ell & \text{(b)} \\ \Lambda = \operatorname{diag}(0, \lambda_2, \dots, \lambda_N) \succeq 0 & \text{(c)} \\ \operatorname{tr}(\Lambda) = N \in \mathbb{R}_+^+, & \text{(d)} \end{cases}$$

- $\|Y XH\|_F^2$ stands for the reconstruction error
- $\|\Lambda^{1/2}H\|_F^2$ controls the smoothness of the approximation XH
- $\|H\|_S = \|H\|_{2,0}$ or $\|H\|_{2,1}$ enforces the GFT to be 0 at the same dimensions
- $ightharpoonup \alpha$ and eta are positive hyperparameters

$$\min_{H,X,\Lambda} ||Y - XH||_F^2 + \alpha ||\Lambda^{1/2}H||_F^2 + \beta ||H||_S$$
s.t.
$$\begin{cases} X^T X = I_N, x_1 = \frac{1}{\sqrt{N}} \mathbf{1}_N & \text{(a)} \\ (X \Lambda X^T)_{k,\ell} \le 0 & k \ne \ell & \text{(b)} \\ \Lambda = \operatorname{diag}(0, \lambda_2, \dots, \lambda_N) \succeq 0 & \text{(c)} \\ \operatorname{tr}(\Lambda) = N \in \mathbb{R}_+^+ & \text{(d)} \end{cases}$$

- $\|Y XH\|_F^2$ stands for the reconstruction error
- $\|\Lambda^{1/2}H\|_F^2$ controls the smoothness of the approximation XH
- $\|H\|_S = \|H\|_{2,0}$ or $\|H\|_{2,1}$ enforces the GFT to be 0 at the same dimensions
- $ightharpoonup \alpha$ and β are positive hyperparameters that controls smoothness and bandlimitedness

Optimization program

$$\min_{H,X,\Lambda} ||Y - XH||_F^2 + \alpha ||\Lambda^{1/2}H||_F^2 + \beta ||H||_S$$
s.t.
$$\begin{cases} X^T X = I_N, x_1 = \frac{1}{\sqrt{N}} \mathbf{1}_N & \text{(a)} \\ (X\Lambda X^T)_{k,\ell} \le 0 & k \ne \ell & \text{(b)} \\ \Lambda = \operatorname{diag}(0, \lambda_2, \dots, \lambda_N) \succeq 0 & \text{(c)} \\ \operatorname{tr}(\Lambda) = N \in \mathbb{R}_+^+ & \text{(d)} \end{cases}$$

- $\|Y XH\|_F^2$ stands for the reconstruction error
- $\|\Lambda^{1/2}H\|_F^2$ controls the smoothness of the approximation XH
- $\|H\|_S = \|H\|_{2,0}$ or $\|H\|_{2,1}$ enforces the GFT to be 0 at the same dimensions
- \triangleright α and β are positive hyperparameters that controls smoothness and bandlimitedness
- (a), (b) and (c) ensure $X\Lambda X^T$ to be a Laplacian
- (d) makes sure the graph has edges

Optimization program

$$\min_{H,X,\Lambda} ||Y - XH||_F^2 + \alpha ||\Lambda^{1/2}H||_F^2 + \beta ||H||_S$$
s.t.
$$\begin{cases} X^T X = I_N, x_1 = \frac{1}{\sqrt{N}} \mathbf{1}_N & \text{(a)} \\ (X\Lambda X^T)_{k,\ell} \le 0 & k \ne \ell & \text{(b)} \\ \Lambda = \operatorname{diag}(0, \lambda_2, \dots, \lambda_N) \succeq 0 & \text{(c)} \\ \operatorname{tr}(\Lambda) = N \in \mathbb{R}_+^+ & \text{(d)} \end{cases}$$

- $\|Y XH\|_F^2$ stands for the reconstruction error
- $\|\Lambda^{1/2}H\|_F^2$ controls the smoothness of the approximation XH
- $\|H\|_S = \|H\|_{2,0}$ or $\|H\|_{2,1}$ enforces the GFT to be 0 at the same dimensions
- \triangleright α and β are positive hyperparameters that controls smoothness and bandlimitedness
- (a), (b) and (c) ensure $X\Lambda X^T$ to be a Laplacian
- (d) makes sure the graph has edges

Solving the program (overview)

- Optimization program not convex + very difficult to updates all variables directly
 Use block-coordinate descent
- ▶ Other problem: constraint (b) $(X \Lambda X^T)_{kl} \le 0$ difficult to handle at the X-step → Solution: IGL-3SR and FGL-3SR [Le Bars *et al.*, ICASSP 2019, Humbert *et al.*, JMLR 2021]
- ▶ Both relax (b) and use block-coordinate descent over X, Λ and H

$$\min_{H,X,\Lambda} ||Y - XH||_F^2 + \alpha ||\Lambda^{1/2}H||_F^2 + \beta ||H||_S$$
s.t.
$$\begin{cases} X^T X = I_N, x_1 = \frac{1}{\sqrt{N}} \mathbf{1}_N & \text{(a)} \\ (X\Lambda X^T)_{k,\ell} \le 0 & k \ne \ell & \text{(b)} \\ \Lambda = \text{diag}(0, \lambda_2, \dots, \lambda_N) \succeq 0 & \text{(c)} \\ \text{tr}(\Lambda) = N \in \mathbb{R}_+^+ & \text{(d)} \end{cases}$$

Solving the program (overview)

- Optimization program not convex + very difficult to updates all variables directly
 Use block-coordinate descent
- ► Other problem: constraint (b) $(X \cap X^T)_{kl} \le 0$ difficult to handle at the X-step → Solution: IGL-3SR and FGL-3SR [Le Bars *et al.*, ICASSP 2019, Humbert *et al.* JMLR 2021]
- ▶ Both relax (b) and use block-coordinate descent over X, Λ and H

IGL-3SR

Relaxation: use a log-barrier function to put (b) in the objective

- + Each sub-problem is solvable using known techniques
- + Decrease at each step and stays in the constraint set
- + Iterates are ensured to converge
- High complexity

FGL-3SR

Relaxation: get rid of (b), only at the X-step

- + Lower complexity
- + 2/3 steps has closed-form
- + Returns a Laplacian even with the relaxation
- Objective function value can increase

Synthetic data

- Large simulation study in [Le Bars et al., ICASSP 2019, Humbert et al., JMLR 2021]
- ► True graphs: Random Geometric or Erdös-Renyi
- Y sampled via factor analysis model
- Comparison with two GSP baselines:
 - → GL-SigRep (Dong et al. 2016 [5]): Only smoothness
 - \rightarrow ESA-GL (Sardellitti $\it et~al.~$ 2019 [18]): Bandlimitedness

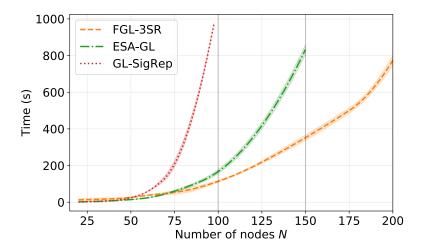
Synthetic data

- Large simulation study in [Le Bars et al., ICASSP 2019, Humbert et al., JMLR 2021]
- ► True graphs: Random Geometric or Erdös-Renyi
- Y sampled via factor analysis model
- Comparison with two GSP baselines:
 - → GL-SigRep (Dong et al. 2016 [5]): Only smoothness
 - → ESA-GL (Sardellitti et al. 2019 [18]): Bandlimitedness

Results and conclusion

- ► IGL-3SR outperforms baselines and FGL-3SR in terms of true graph recovery
- ▶ It is very slow, not practical for ≥ 20 nodes
- FGL-3SR is a good compromise between graph recovery and time before convergence

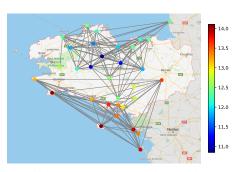
Synthetic data - Results



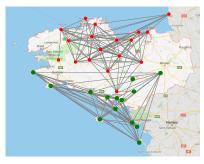
A real-world illustration

- Temperature data in Brittany (Chepuri et al. 2017 [4])
- \triangleright N = 32 weather station
- spectral clustering to ascess the quality

- \triangleright n = 744 measurements
- $\alpha = 10^{-4}$, β s.t 2-bandlimited



(a) A measurement example and the learned graph.



(b) Spectral clustering with the learned graph.

Coherent with the spatial distribution. Splits the north from the south of Brittany

Part 3

Detecting changes in the graph structure of a varying Ising model

Background

Context

- Probabilistic modeling, the data come from a Markov Random Field (MRF)
- ► Binary vector data: Ising model
- ► Change-point detection with *unknown* number of change-points
- Related works:
 - Detection in Gaussian graphical models (Gibberd and Nelson, 2017 [8])
 - Detection in Ising with known number of change-points (Roy et al. 2017 [17])

Background

Context

- Probabilistic modeling, the data come from a Markov Random Field (MRF)
- ► Binary vector data: Ising model
- ▶ Change-point detection with *unknown* number of change-points
- Related works:
 - Detection in Gaussian graphical models (Gibberd and Nelson, 2017 [8])
 - Detection in Ising with known number of change-points (Roy et al. 2017 [17])

Ising model

Let G = (V, E) and $\Omega \in \mathbb{R}^{p \times p}$ symmetric whose non-zero elements correspond to the set of edges E. The probability distribution function (pdf) of an Ising random vector X:

$$\mathbb{P}_{\Omega}(X = x) = \frac{1}{Z(\Omega)} \exp \left\{ \sum_{a < b} x_a x_b \omega_{ab} \right\}$$

- \triangleright $Z(\Omega)$: Normalizing constant
- $x \in \{-1, 1\}^p$

Model and objectives

Piece-wise constant Ising model

- ► Time-series of *n* independent Ising vectors $X^{(i)}$ with parameter $\Omega^{(i)}$
- ► Piecewise constant evolving structure:

$$\Omega^{(i)} = \sum_{k=0}^{D} \Theta^{(k+1)} \mathbf{1} \{ T_k \le i < T_{k+1} \}$$

 $T_0 = 1$ and $T_{D+1} = n + 1$.

- ▶ *D* change-points appearing a time $T_1, ..., T_D$
- ▶ D+1 sub-model parametrized by $\Theta^{(1)}, \ldots, \Theta^{(D+1)}$

Model and objectives

Piece-wise constant Ising model

- ► Time-series of *n* independent Ising vectors $X^{(i)}$ with parameter $\Omega^{(i)}$
- ▶ Piecewise constant evolving structure:

$$\Omega^{(i)} = \sum_{k=0}^{D} \Theta^{(k+1)} \mathbf{1} \{ T_k \le i < T_{k+1} \}$$

$$T_0 = 1$$
 and $T_{D+1} = n + 1$.

- \triangleright D change-points appearing a time T_1, \ldots, T_D
- ▶ D+1 sub-model parametrized by $\Theta^{(1)}, \ldots, \Theta^{(D+1)}$

Objectives:

- Learn for each $X^{(i)}$ its associated parameter $\Omega^{(i)}$
- ▶ Infer the number of change-points *D* and their time instances

- Can we use standard maximum likelihood approach?
 → No, due to the intractability of Z(·) and the high-dimensional scenario
- Instead, penalized neighborhood selection strategy: TVI-FL [Le Bars et al., ICML 2020]

TVI-FL

For each node j = 1, ..., p, we solve

$$\widehat{\omega}_{j} = \underset{\omega \in \mathbb{R}^{p-1 \times n}}{\operatorname{argmin}} \, \mathcal{L}_{j}(\omega) + pen_{\lambda_{1}, \lambda_{2}}(\omega)$$

- A column $\widehat{\omega}_{i}^{(i)}$ of $\widehat{\omega}_{j}$ corresponds to the *j*-th row/column of $\widehat{\Omega}^{(i)}$
 - \longrightarrow The neighborhood's weights of node j at time i

TVI-FL

For each node j = 1, ..., p, we solve

$$\widehat{\omega}_{j} = \underset{\omega \in \mathbb{R}^{p-1 \times n}}{\operatorname{argmin}} \, \mathcal{L}_{j}(\omega) + pen_{\lambda_{1}, \lambda_{2}}(\omega)$$

$$\begin{split} \mathcal{L}_{j}(\omega) &\triangleq -\sum_{i=1}^{n} \log \left(\mathbb{P}_{\omega^{(i)}}(x_{j}^{(i)}|x_{j}^{(i)}) \right) \\ &= \sum_{i=1}^{n} \log \left\{ \exp \left(\omega^{(i)\top} x_{j}^{(i)} \right) + \exp \left(-\omega^{(i)\top} x_{j}^{(i)} \right) \right\} - \sum_{i=1}^{n} x_{j}^{(i)} \omega^{(i)\top} x_{j}^{(i)} \end{split}$$

- Conditional log-likelihood of node *j* knowing the other nodes values
- Convex function

TVI-FL

For each node $j = 1, \ldots, p$, we solve

$$\widehat{\omega}_{j} = \underset{\omega \in \mathbb{R}^{p-1 \times n}}{\operatorname{argmin}} \, \mathcal{L}_{j}(\omega) + pen_{\lambda_{1}, \lambda_{2}}(\omega)$$

$$pen_{\lambda_1,\lambda_2}(\omega) \triangleq \lambda_1 \sum_{i=2}^n \|\omega^{(i)} - \omega^{(i-1)}\|_2 + \lambda_2 \sum_{i=1}^n \|\omega^{(i)}\|_1$$

- \triangleright λ_1 and λ_2 are positive hyperparameters
- The first term fused penalty controls the piece-wise constant structure and the number of change-points
- ► The second term lasso penalty imposes sparsity in the learnt neighborhood

TVI-FL

For each node $j = 1, \ldots, p$, we solve

$$\widehat{\omega}_{j} = \underset{\omega \in \mathbb{R}^{p-1 \times n}}{\operatorname{argmin}} \, \mathcal{L}_{j}(\omega) + pen_{\lambda_{1}, \lambda_{2}}(\omega)$$

$$pen_{\lambda_1,\lambda_2}(\omega) \triangleq \lambda_1 \sum_{i=2}^n \|\omega^{(i)} - \omega^{(i-1)}\|_2 + \lambda_2 \sum_{i=1}^n \|\omega^{(i)}\|_1$$

- \triangleright λ_1 and λ_2 are positive hyperparameters
- The first term fused penalty controls the piece-wise constant structure and the number of change-points
- The second term lasso penalty imposes sparsity in the learnt neighborhood

In conclusion:

- Non-differentiable but convex function
- TVI-FL solvable by convex programming tools and software
- Set of estimated change-points : $\widehat{\mathcal{D}} = \left\{ \widehat{T}_k \in \{2, \dots, n\} : \|\widehat{\omega}_j^{(\widehat{T}_k)} \widehat{\omega}_j^{(\widehat{T}_k 1)}\|_2 \neq 0 \right\}$

Theoretical analysis

Assumptions:

- $\blacktriangleright \text{ (A1) } \exists \phi_{\min} > 0 \text{ and } \phi_{\max} < \infty \text{ s.t. } \phi_{\min} \leq \Lambda_{\min} \left(\mathbb{E}_{\Theta^{(k)}}[X_{\backslash j}X_{\backslash j}^\top] \right) \text{ and } \phi_{\max} \geq \Lambda_{\max} \left(\mathbb{E}_{\Theta^{(k)}}[X_{\backslash j}X_{\backslash j}^\top] \right)$
- ▶ (A2) There exists $M \ge 0$ s.t. $\max_{k \in [D+1]} \|\theta_i^{(k)}\|_2 \le M$
- ▶ (A3) For all k = 1, ..., D, $T_k = \lfloor n\tau_k \rfloor$ with unknown $\tau_k \in [0, 1]$

Theoretical analysis

Assumptions:

- $\qquad \qquad \blacktriangleright \ \, \text{(A1)} \ \exists \phi_{\min} > 0 \ \text{and} \ \phi_{\max} < \infty \ \text{s.t.} \ \phi_{\min} \le \Lambda_{\min} \left(\mathbb{E}_{\Theta^{(k)}}[X_{\backslash j}X_{\backslash j}^\top] \right) \ \text{and} \ \phi_{\max} \ge \Lambda_{\max} \left(\mathbb{E}_{\Theta^{(k)}}[X_{\backslash j}X_{\backslash j}^\top] \right)$
- ▶ (A2) There exists $M \ge 0$ s.t. $\max_{k \in [D+1]} \|\theta_i^{(k)}\|_2 \le M$
- ▶ (A3) For all k = 1, ..., D, $T_k = |n\tau_k|$ with unknown $\tau_k \in [0, 1]$

Theorem - Change-Point consistency

Consider (A1-A3) and let $\{\delta_n\}_{n\geq 1}$ be a non-increasing sequence that converges to 0 and s.t. $n\delta_n\to\infty$. If $\widehat D=D$, we have:

$$\mathbb{P}(\max_{k=1,\ldots,D}|\hat{T}_k - T_k| \leq n\delta_n) \underset{n \to \infty}{\longrightarrow} 1$$

▶ Drawback: $\widehat{D} = D$ difficult to verify

Change-Point consistency 2

 $d(A||B) = \sup_{b \in B} \inf_{a \in A} |b - a|$

Proposition

Under the same conditions, if $D \leq \widehat{D}$ then:

$$\mathbb{P}(d(\widehat{\mathcal{D}}\|\mathcal{D}) \leq n\delta_n) \underset{n \to \infty}{\longrightarrow} 1$$

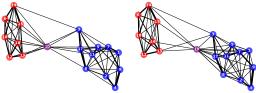
- Overestimated number of change-points
- Asymptotically, all the true change-points belong to the estimated set of change-points

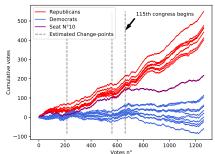
Voting data set

- Votes (yes/no) in Illinois house of representatives (Lewis et al. 2020 [13])
- ▶ 18 seats → 18 nodes
- 1264 votes
- ► 114-th and 115-th US Congresses (2015-2019)
- \triangleright λ_1 and λ_2 minimizing AIC

Results:

- Party structure: Republican vs Democrat
- ► Biggest change-point: End of congress
- Seat 10 change party
- Brings knowledge: seat 10 is a super-collaborator





Introduction Network anomaly detection Graph Learning Temporal Ising Conclusion

Conclusion

Conclusion

A diverse work ...

- Anomaly detection, change-point detection, graph learning, optimization
- ► GSP framework, probabilistic framework
- Not discussed: robust kernel density estimation [Le Bars et al., 2020]
- Codes available online at github.com/BatisteLB

... with open questions

- ▶ Online version for change-point detection of part 3
- ▶ Better theoretical understanding: consistent graph recovery?
- Improve optimization of part 2 and 3
- Make a better use of the graph in part 1

What about my postdoc?

Fully decentralized federated learning

- Decentralized algorithms depend on a graph topology → also impacts the convergence!
- Impact increases when data are non iid
- Dijective: learning data-dependent graphs that can speed-up convergence

Learning with privacy

- Learning graphs under privacy constraints
- Privately learning the graph proposed above
- Markov Random Fields inference under (local) differential privacy

Publications and preprints

- ▶ B. Le Bars, and A. Kalogeratos. A Probabilistic Framework to Node-level Anomaly Detection in Communication Networks. In 2019 IEEE Conference on Computer Communications (INFOCOM), 2019
- ▶ B. Le Bars, P. Humbert, L. Oudre, and A. Kalogeratos. Learning Laplacian Matrix from Bandlimited Graph Signals. In 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019
- B. Le Bars, P. Humbert, A. Kalogeratos, and N. Vayatis. Learning the piece-wise constant graph structure of a varying Ising model. In 2020 International Conference on Machine Learning (ICML), 2020
- B. Le Bars, P. Humbert, L. Minvielle, and N. Vayatis. Robust Kernel Density Estimation with Median-of-Means principle. Arxiv preprint, 2020
- P. Humbert, B. Le Bars, L. Oudre, A. Kalogeratos, and N. Vayatis. Learning Laplacian Matrix from Graph Signals with Sparse Spectral Representation. In Journal of Machine Learning Research (JMLR), 2021

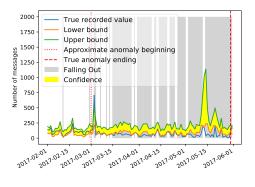
References

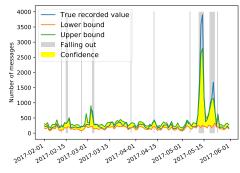
- [1] Bybee, L. and Atchadé, Y. (2018). Change-point computation for large graphical models: a scalable algorithm for gaussian graphical models with change-points. *J. of Machine Learning Research*, 19(1):440–477.
- [2] Chen, S., Sandryhaila, A., and Kovačević, J. (2015). Sampling theory for graph signals. In *Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing*, pages 3392–3396.
- [3] Chen, Y., Mao, X., Ling, D., and Gu, Y. (2018). Change-point detection of gaussian graph signals with partial information. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3934–3938. IEEE.
- [4] Chepuri, S. P., Liu, S., Leus, G., and Hero, A. O. (2017). Learning sparse graphs under smoothness prior. In *Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing*, pages 6508–6512.
- [5] Dong, X., Thanou, D., Frossard, P., and Vandergheynst, P. (2016). Learning laplacian matrix in smooth graph signal representations. *Trans. Signal Processing*, 64(23):6160–6173.
- [6] Egilmez, H. E. and Ortega, A. (2014). Spectral anomaly detection using graph-based filtering for wireless sensor networks. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1085–1089. IEEE.
- [7] Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. *Biostatistics*, 9(3):432–441.
- [8] Gibberd, A. J. and Nelson, J. D. (2017). Regularized estimation of piecewise constant gaussian graphical models: The group-fused graphical lasso. *Journal of Computational and Graphical Statistics*, 26(3):623–634.
- [9] Goel, S., Kane, D. M., and Klivans, A. R. (2019). Learning ising models with independent failures. In Conference on Learning Theory, pages 1449–1469.
- [10] Hong, Y. (2013). On computing the distribution function for the poisson binomial distribution. Computational Statistics & Data Analysis, 59:41–51.
- [11] Ji, T., Yang, D., and Gao, J. (2013). Incremental local evolutionary outlier detection for dynamic social networks. In *Proc. of the Joint European Conf. on Machine Learning and Knowledge Discovery in Databases*, pages 1–15. Springer.

References

- [12] Kolar, M., Song, L., Ahmed, A., and Xing, E. P. (2010). Estimating time-varying networks. *The Annals of Applied Statistics*, 4(1):94–123.
- [13] Lewis, J. B., Poole, K., Rosenthal, H., Boche, A., Rudkin, A., and Sonnet, L. (2020). Voteview: Congressional roll-call votes database. https://voteview.com/.
- [14] Londschien, M., Kovács, S., and Bühlmann, P. (2020). Change point detection for graphical models in the presence of missing values. *Journal of Computational and Graphical Statistics*, pages 1–32.
- [15] Neil, J., Hash, C., Brugh, A., Fisk, M., and Storlie, C. (2013). Scan statistics for the online detection of locally anomalous subgraphs. *Technometrics*, 55(4):403–414.
- [16] Ravikumar, P., Wainwright, M. J., and Lafferty, J. D. (2010). High-dimensional ising model selection using l1-regularized logistic regression. The Annals of Statistics, 38(3):1287-1319.
- [17] Roy, S., Atchadé, Y., and Michailidis, G. (2017). Change point estimation in high dimensional markov random-field models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(4):1187–1206.
- [18] Sardellitti, S., Barbarossa, S., and Di Lorenzo, P. (2019). Graph topology inference based on sparsifying transform learning. *IEEE Transactions on Signal Processing*, 67(7):1712–1727.
- [19] Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., and Williamson, R. C. (2001). Estimating the support of a high-dimensional distribution. *Neural Computation*, 13(7):1443–1471.
- [20] Yamada, K., Tanaka, Y., and Ortega, A. (2020). Time-varying graph learning with constraints on graph temporal variation. arXiv preprint arXiv:2001.03346.

Results bilateral





(a) Abnormal Base Station - Bilateral intervals

(b) Normal Base Station - Bilateral intervals

FGL-3SR

H-step

$$\min_{H} ||Y - XH||_F^2 + \alpha ||\Lambda^{1/2}H||_F^2 + \beta ||H||_S$$

- No constraint
- Equivalent to multiple sparse linear regression problems
- ► Closed-form solutions
- $\|\cdot\|_S = \|\cdot\|_{2,0}$: hard-thresholding
- $\|\cdot\|_S = \|\cdot\|_{2,1}$: solf-thresholding

FGL-3SR

X-step

$$\min_{X} ||Y - XH||_F^2$$
 s.t. $X^T X = I_N, x_1 = \frac{1}{\sqrt{N}} \mathbf{1}_N$ (a)

- (b) is out
- Non-convex but has a closed-form:

$$X^{(t+1)} = X^{(t)} \begin{bmatrix} 1 & \mathbf{0}_{N-1}^{\mathsf{T}} \\ \mathbf{0}_{N-1} & PQ^{\mathsf{T}} \end{bmatrix} ,$$

where the columns in P and Q are the left- and right-singular vectors of $(X^{(t+1)T}YH^T)_{2:,2:}$

FGL-3SR

∧-step

$$\min_{\Lambda} \alpha \underbrace{\operatorname{tr}(HH^{\mathsf{T}}\Lambda)}_{\|\Lambda^{1/2}H\|_{\mathcal{F}}^{2}} \quad \text{s.t.} \quad \begin{cases} (X\Lambda X^{\mathsf{T}})_{i,j} \leq 0 & i \neq j \ , \\ \Lambda = \operatorname{diag}(0, \lambda_{2}, \dots, \lambda_{N}) \succeq 0 \ , \end{cases} \quad \text{(b)} \\ \operatorname{tr}(\Lambda) = N \in \mathbb{R}_{*}^{+} \quad , \qquad \text{(d)}$$

- (b) is back
- Linear program: can be solved via solvers
- Property: for all X that satisfies (a), there exist Λ that satisfies (b), (c) and (d) → Need to finish by this step

Synthetic data graph learning - Results

		RG graph model				ER graph model			
N	Metrics	IGL-3SR	FGL-3SR	ESA-GL	GL-SigRep	IGL-3SR	FGL-3SR	ESA-GL	GL-SigRep
20	F_1 -measure $\rho(L, \hat{L})$ Time	0.97 (±0.03) 0.94 (±0.05) < 1min	0.97 (±0.03) 0.90 (±0.03) < 10s	0.93 (±0.03) 0.92 (±0.05) < 5s	0.95 (±0.04) 0.79 (±0.04) < 5s	0.94 (±0.03) 0.92 (±0.03) < 1min	0.82 (±0.07) 0.73 (±0.06) < 10s	0.94 (±0.04) 0.90 (±0.04) < 5s	0.78 (±0.07) 0.20 (±0.07) < 5s
50	F_1 -measure $\rho(L, \hat{L})$ Time	0.90 (\pm 0.01) 0.86 (\pm 0.02) < 17mins	0.81 (±0.02) 0.74 (±0.03) < 40s	0.87 (±0.04) 0.83 (±0.03) < 60s	0.75 (±0.01) 0.55 (±0.02) < 40s	0.81 (±0.02) 0.78 (±0.03) < 17mins	0.76 (±0.03) 0.73 (±0.02) < 40s	0.84 (±0.02) 0.82 (±0.06) < 60s	0.61 (±0.03) 0.06 (±0.01) < 40s
100	F_1 -measure $\rho(L, \hat{L})$ Time	0.73 (±0.03) 0.61 (±0.04) < 50mins	0.64 (±0.01) 0.48 (±0.01) < 2mins	0.70 (±0.01) 0.60 (±0.03) < 4mins	- - -	0.62 (±0.01) 0.55 (±0.02) < 50mins	0.59 (±0.02) 0.51 (±0.022) < 2mins	0.59 (±0.02) 0.64 (± 0.02) < 4mins	- - -

Synthetic data

- \triangleright n = 100, p = 20, 2 Change-Points
- ▶ Random Regular Graphs with degree $\in \{2, 3, 4\}$
- Competitor: Tesla (Kolar et al. [12])
- ► Metrics, *F*₁-score and *h*-score:

$$h(\mathcal{D},\widehat{\mathcal{D}}) \triangleq \frac{1}{n} \max \left\{ \max_{t \in \mathcal{D}} \min_{\hat{t} \in \widehat{\mathcal{D}}} |t - \hat{t}|, \max_{\hat{t} \in \widehat{\mathcal{D}}} \min_{t \in \mathcal{D}} |t - \hat{t}| \right\}.$$

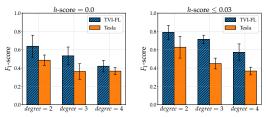


Figure: Average F_1 -score obtained when the h-score is below a certain threshold.

- Outperforming Telsa, not designed for proper CP detection
- Complete results in the main paper

Sigfox data set TVI-FL

- Same data set as in part 1
- \triangleright λ_1 and λ_2 selected via AIC
- Several change-points, but an important one around the 30th day

Figure: (Left) A graph learned before the BS failure, recorded on the 30th day. (Right) A graph learned after this day

Robust Kernel Density Estimator

Classical framework

- $\blacktriangleright \{X_1,\ldots,X_n\}$
- $\forall i = 1, \ldots, n, X_i \sim f$
- Kernel Density Estimator (KDE):

$$\hat{f}_n(x) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right)$$

Outlier framework

- $\blacktriangleright \{X_1,\ldots,X_n\} = \mathcal{O} \cup \mathcal{I}$
- $ightharpoonup \forall i \in \mathcal{I}, X_i \sim f$
- \triangleright B_1, \ldots, B_S : random partition of [n]
- $n_s = |B_s|$
- ► Median-of-Means KDE:

$$\hat{f}_{MoM}(x_0) \propto \operatorname{Median}\left(\hat{f}_{n_1}(x_0), \ldots, \hat{f}_{n_S}(x_0)\right)$$

Robust Kernel Density Estimator

