Refined Convergence and Topology Learning for Decentralized Optimization with Heterogeneous Data

CAp 2022

Batiste Le Bars

Magnet, Inria Lille

Joint work with: A. Bellet (Inria), M. Tommasi (Inria), E. Lavoie (EPFL), AM. Kermarrec (EPFL)

Thursday, July 7th, 2022

(nría_

Background and motivations

Framework

- Decentralized data
- Centralization is not allowed

Framework

- Decentralized data
- Centralization is not allowed

- Agents can collaborate
- Communication according to a graph topology

Framework

- Decentralized data
- Centralization is not allowed

Problem setting

n agents (nodes) seeking to optimize

 $\min_{\theta \in \mathbb{R}^d} \left[f(\theta) \triangleq \frac{1}{n} \sum_{i=1}^n f_i(\theta) \right],$

- Agents can collaborate
- Communication according to a graph topology

Framework

- Decentralized data
- Centralization is not allowed

Problem setting

n agents (nodes) seeking to optimize

$$\min_{\theta \in \mathbb{R}^d} \left[f(\theta) \triangleq \frac{1}{n} \sum_{i=1}^n f_i(\theta) \right],$$

- $\blacktriangleright f_i(\theta) \triangleq \mathbb{E}_{Z_i \sim \mathcal{D}_i}[F_i(\theta; Z_i)]$
- \blacktriangleright $F_i = \text{local loss function}$
- *D_i* = local data distribution (heterogeneity)

- Agents can collaborate
- Communication according to a graph topology

Framework

- Decentralized data
- Centralization is not allowed

- Agents can collaborate
- Communication according to a graph topology

Problem setting

n agents (nodes) seeking to optimize

$$\min_{\theta \in \mathbb{R}^d} \left[f(\theta) \triangleq \frac{1}{n} \sum_{i=1}^n f_i(\theta) \right],$$

- $\blacktriangleright f_i(\theta) \triangleq \mathbb{E}_{Z_i \sim \mathcal{D}_i}[F_i(\theta; Z_i)]$
- \triangleright $F_i = \text{local loss function}$
- *D_i* = local data distribution (heterogeneity)
- Communication topology is $W \in [0, 1]^{n \times n}$
- W_{ij} = 0 (no edge) ⇔ node i and j cannot communicate

Algorithm

- $W \in [0, 1]^{n \times n}$ is doubly stochastic
- It can change across iterations t

D-SGD (Lian et al., 2017)

Input: $\theta_{i}^{(0)} = \theta^{(0)} \in \mathbb{R}^{d}$, stepsizes $\{\eta_{i}\}_{t=0}^{T-1}$, mixing $\{W^{(t)}\}_{t=0}^{T-1}$ for t = 0, ..., T - 1 do for each node i = 1, ..., n do Sample $Z_{i}^{(t)} \sim D_{i}$ 1. $\theta_{i}^{(t+\frac{1}{2})} \leftarrow \theta_{i}^{(t)} - \eta_{t} \nabla F_{i}(\theta_{i}^{(t)}, Z_{i}^{(t)})$ 2. $\theta_{i}^{(t+1)} \leftarrow \sum_{j=1}^{n} W_{ij}^{(t)} \theta_{j}^{(t+\frac{1}{2})}$ end for end for

Algorithm

- $W \in [0, 1]^{n \times n}$ is doubly stochastic
- It can change across iterations t

D-SGD (Lian et al., 2017)

Input: $\theta_{i}^{(0)} = \theta^{(0)} \in \mathbb{R}^{d}$, stepsizes $\{\eta_{t}\}_{t=0}^{T-1}$, mixing $\{W^{(t)}\}_{t=0}^{T-1}$ for t = 0, ..., T - 1 do for each node i = 1, ..., n do Sample $Z_{i}^{(t)} \sim D_{i}$ 1. $\theta_{i}^{(t+\frac{1}{2})} \leftarrow \theta_{i}^{(t)} - \eta_{t} \nabla F_{i}(\theta_{i}^{(t)}, Z_{i}^{(t)})$ 2. $\theta_{i}^{(t+1)} \leftarrow \sum_{j=1}^{n} W_{ij}^{(t)} \theta_{j}^{(t+\frac{1}{2})}$ end for end for

Impact of the topology

Algorithm

- $W \in [0, 1]^{n \times n}$ is doubly stochastic
- It can change across iterations t

D-SGD (Lian et al., 2017)

Input: $\theta_i^{(0)} = \theta^{(0)} \in \mathbb{R}^d$, stepsizes { η_i } $_{t=0}^{T-1}$, mixing { $W^{(t)}$ } $_{t=0}^{T-1}$ for $t = 0, \dots, T-1$ do for each node $i = 1, \dots, n$ do Sample $Z_i^{(t)} \sim \mathcal{D}_i$ 1. $\theta_i^{(t+\frac{1}{2})} \leftarrow \theta_i^{(t)} - \eta_t \nabla F_i(\theta_i^{(t)}, Z_i^{(t)})$ 2. $\theta_i^{(t+1)} \leftarrow \sum_{j=1}^n W_{ij}^{(t)} \theta_j^{(t+\frac{1}{2})}$ end for end for

Impact of the topology

Communication costs (maximum degree)
 W should be sparse

Algorithm

- $W \in [0, 1]^{n \times n}$ is doubly stochastic
- It can change across iterations t

D-SGD (Lian et al., 2017)

Input: $\theta_i^{(0)} = \theta^{(0)} \in \mathbb{R}^d$, stepsizes $\{\eta_t\}_{t=0}^{T-1}$, mixing $\{W^{(t)}\}_{t=0}^{T-1}$ for $t = 0, \dots, T-1$ do for each node $i = 1, \dots, n$ do Sample $Z_i^{(t)} \sim \mathcal{D}_i$ 1. $\theta_i^{(t+\frac{1}{2})} \leftarrow \theta_i^{(t)} - \eta_t \nabla F_i(\theta_i^{(t)}, Z_i^{(t)})$ 2. $\theta_i^{(t+1)} \leftarrow \sum_{j=1}^n W_{ij}^{(t)} \theta_j^{(t+\frac{1}{2})}$ end for end for

Impact of the topology

- Communication costs (maximum degree)
 W should be sparse
- Convergence speed $\rightarrow W$ should be sufficiently connected

Previous work and open questions

Based on the spectral gap of W

- Most common analysis (e.g. Koloskova et al. (2020); Lian et al. (2017); Wang et al. (2019))
- Small spectral gap \Rightarrow dense matrix $W \Rightarrow$ D-SGD closer to centralized SGD
- Problem: convergence rates heavily impacted by heterogeneity!
- \rightarrow Can we exhibit a better quantity?

Previous work and open questions

Based on the spectral gap of *W*

- Most common analysis (e.g. Koloskova et al. (2020); Lian et al. (2017); Wang et al. (2019))
- Small spectral gap \Rightarrow dense matrix $W \Rightarrow$ D-SGD closer to centralized SGD
- Problem: convergence rates heavily impacted by heterogeneity!
- \rightarrow Can we exhibit a better quantity?

Data-dependent topology?

- D-cliques (Bellet et al., 2021)
- Topology that compensates data-heterogeneity
- Problem: Only empirical results, not flexible topology
- \rightarrow Can we propose a data-dependent topology that is theoretically understood?

- ► Half nodes have blue distribution, other half have red distribution
- Ring graph

- ► Half nodes have blue distribution, other half have red distribution
- Ring graph

- ► Half nodes have blue distribution, other half have red distribution
- Ring graph

- ► Half nodes have blue distribution, other half have red distribution
- Ring graph

Refined convergence with Neighborhood Heterogeneity

Basic assumptions

Assumption 1 (L-smoothness)

 $\exists L > 0 \text{ s.t. } \forall Z \in \Omega_i, \theta, \tilde{\theta} \in \mathbb{R}^d: \quad \|\nabla F_i(\theta, Z) - \nabla F_i(\tilde{\theta}, Z)\| \leq L \|\theta - \tilde{\theta}\|$

Basic assumptions

Assumption 1 (L-smoothness)

 $\exists L > 0 \text{ s.t. } \forall Z \in \Omega_i, \theta, \tilde{\theta} \in \mathbb{R}^d: \quad \|\nabla F_i(\theta, Z) - \nabla F_i(\tilde{\theta}, Z)\| \leq L \|\theta - \tilde{\theta}\|$

Assumption 2 (Bounded variance)

 $\forall i = 1, \dots, n, \exists \sigma_i^2 > 0 \text{ s.t. } \forall \theta \in \mathbb{R}^d: \quad \mathbb{E}_{Z \sim \mathcal{D}_i} \left[\left\| \nabla F_i(\theta, Z) - \nabla f_i(\theta) \right\|_2^2 \right] \leq \sigma_i^2$

Basic assumptions

Assumption 1 (L-smoothness)

 $\exists L > 0 \text{ s.t. } \forall Z \in \Omega_i, \theta, \tilde{\theta} \in \mathbb{R}^d: \quad \|\nabla F_i(\theta, Z) - \nabla F_i(\tilde{\theta}, Z)\| \leq L \|\theta - \tilde{\theta}\|$

Assumption 2 (Bounded variance)

 $\forall i = 1, \dots, n, \exists \sigma_i^2 > 0 \text{ s.t. } \forall \theta \in \mathbb{R}^d: \quad \mathbb{E}_{Z \sim \mathcal{D}_i} \left[\left\| \nabla F_i(\theta, Z) - \nabla f_i(\theta) \right\|_2^2 \right] \leq \sigma_i^2$

Assumption 3 (Mixing parameter)

 $\exists p \in [0, 1] \text{ s.t. } \forall M \in \mathbb{R}^{d \times n}: \quad \|MW^{\mathsf{T}} - \overline{M}\|_F^2 \leq (1 - p)\|M - \overline{M}\|_F^2, \text{ with } \overline{M} = M \cdot \frac{1}{n} \mathbf{1} \mathbf{1}^{\mathsf{T}}.$

▶ *p* linked with spectral gap of *W*

Local vs Neighborhood heterogeneity

Previously: Bounded *local* heterogeneity assumption i.e. $\exists \bar{\zeta}^2 > 0$ s.t. $\frac{1}{n} \sum_{i=1}^n \mathbb{E} \left\| \nabla F_i(\theta, Z_i) - \frac{1}{n} \sum_{j=1}^n \nabla F_j(\theta, Z_j) \right\|_2^2 \leq \bar{\zeta}^2, \quad \forall \theta \in \mathbb{R}^d.$

Local vs Neighborhood heterogeneity

Previously: Bounded *local* heterogeneity assumption i.e. $\exists \bar{\zeta}^2 > 0$ s.t. $\frac{1}{n} \sum_{i=1}^n \mathbb{E} \left\| \nabla F_i(\theta, Z_i) - \frac{1}{n} \sum_{j=1}^n \nabla F_j(\theta, Z_j) \right\|_2^2 \leq \bar{\zeta}^2, \quad \forall \theta \in \mathbb{R}^d.$

Now: Bounded neighborhood heterogeneity

Assumption 4 (Bounded neighborhood heterogeneity) $\exists \, \bar{\tau}^2 > 0 \text{ s.t.}$ $H \triangleq \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left\| \sum_{j=1}^n W_{ij} \nabla F_j(\theta, Z_j) - \frac{1}{n} \sum_{j=1}^n \nabla F_j(\theta, Z_j) \right\|_2^2 \le \bar{\tau}^2, \quad \forall \theta \in \mathbb{R}^d.$

Local vs Neighborhood heterogeneity

Previously: Bounded *local* heterogeneity assumption i.e. $\exists \bar{\zeta}^2 > 0$ s.t. $\frac{1}{n} \sum_{i=1}^n \mathbb{E} \left\| \nabla F_i(\theta, Z_i) - \frac{1}{n} \sum_{j=1}^n \nabla F_j(\theta, Z_j) \right\|_2^2 \leq \bar{\zeta}^2, \quad \forall \theta \in \mathbb{R}^d.$

Now: Bounded neighborhood heterogeneity

Assumption 4 (Bounded neighborhood heterogeneity) $\exists \ \bar{\tau}^2 > 0 \text{ s.t.}$ $H \triangleq \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left\| \sum_{j=1}^n W_{ij} \nabla F_j(\theta, Z_j) - \frac{1}{n} \sum_{j=1}^n \nabla F_j(\theta, Z_j) \right\|_2^2 \le \bar{\tau}^2, \quad \forall \theta \in \mathbb{R}^d.$

- Less restrictive (see Le Bars et al. (2022))
- Jointly quantifies the impact of W and heterogeneity
- Now W can compensate heterogeneity

► $r_0 = \|\theta^{(0)} - \theta^*\|_2^2$, $f_0 = f(\theta^{(0)}) - f^*$ and $\mathcal{O}(\cdot)$ hides the numerical constants.

Green terms come from standard SGD

Middle red term comes from decentralization

- Middle red term comes from decentralization
- Smaller constant in the middle term (see e.g. Koloskova et al. (2020))

• W controls p AND $\overline{\tau}$!

• W controls p AND $\overline{\tau}$!

Can we propose a topology W than minimizes $\overline{\tau}$ and the middle term?

Data-based topology learning

- Minimizing directly H not possible: need additional knowledge!
- Z = (X, Y) with Y = 1, ..., K
- $\blacktriangleright \mathcal{D}_i = P(X|Y)P_i(Y) \text{ (label-skew)}$
- Assume $\prod_{ik} = P_i(Y = k)$ is known

- Minimizing directly H not possible: need additional knowledge!
- Z = (X, Y) with Y = 1, ..., K
- $\blacktriangleright \mathcal{D}_i = P(X|Y)P_i(Y) \text{ (label-skew)}$
- Assume $\prod_{ik} = P_i(Y = k)$ is known

Proposition

 $\exists \ \lambda > 0 \text{ s.t.}$ neighborhood heterogeneity *H* is upper bounded by

$$H \leq g(W) \triangleq \frac{1}{n} \left\| W \Pi - \frac{\mathbf{11}^{\mathsf{T}}}{n} \Pi \right\|_{F}^{2} + \frac{\lambda}{n} \left\| W - \frac{\mathbf{11}^{\mathsf{T}}}{n} \right\|_{F}^{2}$$

- Minimizing directly *H* not possible: need additional knowledge!
- Z = (X, Y) with Y = 1, ..., K
- $\blacktriangleright \mathcal{D}_i = P(X|Y)P_i(Y) \text{ (label-skew)}$
- Assume $\prod_{ik} = P_i(Y = k)$ is known

Proposition

 $\exists \lambda > 0$ s.t. neighborhood heterogeneity *H* is upper bounded by

$$H \leq g(W) \triangleq \frac{1}{n} \left\| W \Pi - \frac{\mathbf{11}^{\mathsf{T}}}{n} \Pi \right\|_{F}^{2} + \frac{\lambda}{n} \left\| W - \frac{\mathbf{11}^{\mathsf{T}}}{n} \right\|_{F}^{2}$$

Objective: Minimize g(W) s.t. W doubly stochastic

- Minimizing directly *H* not possible: need additional knowledge!
- Z = (X, Y) with Y = 1, ..., K
- $\blacktriangleright \mathcal{D}_i = P(X|Y)P_i(Y) \text{ (label-skew)}$
- Assume $\prod_{ik} = P_i(Y = k)$ is known

Proposition

 $\exists \lambda > 0$ s.t. neighborhood heterogeneity *H* is upper bounded by

$$H \leq g(W) \triangleq \frac{1}{n} \left\| W \Pi - \frac{\mathbf{11}^{\mathsf{T}}}{n} \Pi \right\|_{F}^{2} + \frac{\lambda}{n} \left\| W - \frac{\mathbf{11}^{\mathsf{T}}}{n} \right\|_{F}^{2}$$

Objective: Minimize g(W) s.t. W doubly stochastic

- Avoid trivial (dense) solution $W = \frac{1}{n} \mathbf{1} \mathbf{1}^{\mathsf{T}}$
- Find W sparse instead: using Frank-Wolfe!

Optimization with Frank-Wolfe

Algorithm (STL-FW)	
Input: $\widehat{W}^{(0)} = I_n, \Pi \in [0, 1]^{n \times K}$ and $\lambda > 0$ for $l = 0, \dots, L$ do	
1. $P^{(l+1)} = \arg\min_{P \in \mathcal{S}} \langle P, abla g(\widehat{W}^{(l)}) angle$	{Find best doubly-stochastic matrix}
2. $\gamma^{(l+1)} = \arg\min_{\gamma \in [0,1]} g((1-\gamma)\widehat{W}^{(l)} + \gamma P^{(l+1)})$	{Line-search}
3. $\widehat{W}^{(l+1)} = (1 - \gamma^{(l+1)}) \widehat{W}^{(l)} + \gamma^{(l+1)} P^{(l+1)}$ end for	{Convex update}

- Optimal solution of line 1. is sparse
- Closed-form solution for line 2.

Properties of the algorithm

Theorem (informal)

STL-FW converges to the optimal solution at a rate $O(\frac{1}{t})$ and at the end of the *t*-th iteration, each node have at most *t* neighbors.

- Approximately minimizes an upper-bound over H
- Controls the level of sparsity

• Datasets: MNIST and CIFAR10 (K = 10 classes)

- Datasets: MNIST and CIFAR10 (K = 10 classes)
- Models: Linear and Group Normalized LeNet

- Datasets: MNIST and CIFAR10 (K = 10 classes)
- Models: Linear and Group Normalized LeNet
- \triangleright *n* = 100, 1-4 classes per node

- Datasets: MNIST and CIFAR10 (K = 10 classes)
- Models: Linear and Group Normalized LeNet
- \blacktriangleright *n* = 100, 1-4 classes per node
- ▶ 3 competitors: Random, D-Cliques and Exponential graph

- Datasets: MNIST and CIFAR10 (K = 10 classes)
- Models: Linear and Group Normalized LeNet
- \blacktriangleright *n* = 100, 1-4 classes per node
- ▶ 3 competitors: Random, D-Cliques and Exponential graph
- Different level of sparsity (degree max). $d_{max} = 2, 5, 10$

Background Refined convergence Topology Learning Conclusion Model Algorithm Experiments

Results

Figure: Convergence of D-SGD with STL-FW (our approach) and alternative topologies.

Conclusion

Conclusion

Full paper: Le Bars, B., Bellet, A., Tommasi, M., Lavoie, E., and Kermarrec, A. (2022). *Refined convergence and topology learning for decentralized optimization with heterogeneous data*

Future directions:

- Explore more general framework
- Topology learning during D-SGD: using gradient knowledge
- Topology learning in presence of adversarial nodes

► ...

References

- Bellet, A., Kermarrec, A.-M., and Lavoie, E. (2021). D-cliques: Compensating noniidness in decentralized federated learning with topology. *arXiv:2104.07365.*
- Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., and Stich, S. U. (2020). A unified theory of decentralized sgd with changing topology and local updates. In *ICML*.
- Le Bars, B., Bellet, A., Tommasi, M., Lavoie, E., and Kermarrec, A. (2022). Refined convergence and topology learning for decentralized optimization with heterogeneous data.
- Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and Liu, J. (2017). Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent. *NIPS*.
- Wang, J., Sahu, A. K., Yang, Z., Joshi, G., and Kar, S. (2019). Matcha: Speeding up decentralized sgd via matching decomposition sampling. In *ICC*.

Appendix

Impact of λ

Figure: Effect of the hyperparameter λ of STL-FW on the convergence speed of D-SGD with 100 nodes, $d_{max} = 10$.