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I Centralization is not allowed
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I Communication according to a graph
topology

I No exchange of raw data

Problem se�ing

I n agents (nodes) seeking to optimize

minθ∈Rd

[
f (θ) , 1

n

∑n
i=1 fi(θ)

]
,

I fi(θ) , EZi∼Di [Fi(θ; Zi)]

I Fi = local loss function

I Di = local data distribution
(heterogeneity)

I Communication topology is W ∈ [0, 1]n×n

I Wij = 0 (no edge)⇔ node i and j cannot
communicate
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Decentralized Stochastic Gradient Descent (D-SGD)

Algorithm
I W ∈ [0, 1]n×n is doubly stochastic

I It can change across iterations t

D-SGD (Lian et al., 2017)

Input: θ
(0)
i = θ(0) ∈ Rd , stepsizes

{ηt}T−1
t=0 , mixing {W (t)}T−1

t=0

for t = 0, . . . , T − 1 do
for each node i = 1, . . . , n do

Sample Z (t)
i ∼ Di

1. θ
(t+ 1

2 )

i ← θ
(t)
i − ηt∇Fi(θ

(t)
i ,Z (t)

i )

2. θ(t+1)
i ←

∑n
j=1 W (t)

ij θ
(t+ 1

2 )

j
end for

end for

Impact of the topology

I Communication costs (maximum degree)
→ W should be sparse

I Convergence speed
→ W should be su�iciently connected
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Previous work and open questions

Based on the spectral gap of W
I Most common analysis (e.g. Koloskova et al. (2020); Lian et al. (2017); Wang et al. (2019))
I Small spectral gap⇒ dense matrix W ⇒ D-SGD closer to centralized SGD
I Problem: convergence rates heavily impacted by heterogeneity!

→ Can we exhibit a be�er quantity?

Data-dependent topology?
I D-cliques (Bellet et al., 2021)
I Topology that compensates data-heterogeneity
I Problem: Only empirical results, not flexible topology

→ Can we propose a data-dependent topology that is theoretically understood?
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Refined convergence with Neighborhood
Heterogeneity
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Basic assumptions

Assumption 1 (L-smoothness)

∃L > 0 s.t. ∀Z ∈ Ωi , θ, θ̃ ∈ Rd : ‖∇Fi(θ,Z)−∇Fi(θ̃,Z)‖ ≤ L‖θ − θ̃‖

Assumption 2 (Bounded variance)

∀i = 1, . . . , n, ∃ σ2
i > 0 s.t. ∀θ ∈ Rd : EZ∼Di

[
‖∇Fi(θ,Z)−∇fi(θ)‖2

2

]
≤ σ2

i

Assumption 3 (Mixing parameter)

∃p ∈ [0, 1] s.t. ∀M ∈ Rd×n: ‖MWT −M‖2
F ≤ (1− p)‖M−M‖2

F , with M = M · 1
n 11T.

I p linked with spectral gap of W
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Local vs Neighborhood heterogeneity

Previously: Bounded local heterogeneity assumption i.e. ∃ ζ̄2 > 0 s.t.
1
n

∑n
i=1 E

∥∥∥∇Fi(θ,Zi)− 1
n

∑n
j=1∇Fj(θ,Zj)

∥∥∥2

2
≤ ζ̄2, ∀θ ∈ Rd .

Now: Bounded neighborhood heterogeneity

Assumption 4 (Bounded neighborhood heterogeneity)

∃ τ̄ 2 > 0 s.t.

H ,
1
n

n∑
i=1

E
∥∥∥ n∑

j=1

Wij∇Fj(θ,Zj)−
1
n

n∑
j=1

∇Fj(θ,Zj)
∥∥∥2

2
≤ τ̄ 2, ∀θ ∈ Rd .

I Less restrictive (see Le Bars et al. (2022))
I Jointly quantifies the impact of W and heterogeneity
I Now W can compensate heterogeneity
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Assumptions Results

Convergence result

Convergence Theorem (Informal)

Error ε achieved a�er T iterations with
Convex case:

T ≥ O
( σ̄2

nε2
+

√
Lτ̄

pε
3
2

+
L
pε

)
r0 ,

Non-convex case:

T ≥ O
(Lσ̄2

nε2
+

Lτ̄

pε
3
2

+
L
pε

)
f0 ,

I r0 = ‖θ(0) − θ?‖2
2, f0 = f (θ(0))− f ? and O(·) hides the numerical constants.
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Model and objective

I Minimizing directly H not possible: need additional knowledge!

I Z = (X ,Y) with Y = 1, . . . ,K

I Di = P(X |Y)Pi(Y) (label-skew)

I Assume Πik = Pi(Y = k) is known

Proposition

∃ λ > 0 s.t. neighborhood heterogeneity H is upper bounded by

H ≤ g(W) ,
1
n

∥∥∥WΠ− 11T

n
Π
∥∥∥2

F
+
λ

n

∥∥∥W − 11T

n

∥∥∥2

F
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I Minimizing directly H not possible: need additional knowledge!

I Z = (X ,Y) with Y = 1, . . . ,K

I Di = P(X |Y)Pi(Y) (label-skew)

I Assume Πik = Pi(Y = k) is known

Proposition

∃ λ > 0 s.t. neighborhood heterogeneity H is upper bounded by

H ≤ g(W) ,
1
n

∥∥∥WΠ− 11T

n
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∥∥∥2

F
+
λ

n

∥∥∥W − 11T

n

∥∥∥2

F

Objective: Minimize g(W) s.t. W doubly stochastic

I Avoid trivial (dense) solution W = 1
n 11T

I Find W sparse instead: using Frank-Wolfe!
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Optimization with Frank-Wolfe

Algorithm (STL-FW)

Input: Ŵ (0) = In, Π ∈ [0, 1]n×K and λ > 0
for l = 0, . . . , L do

1. P(l+1) = arg minP∈S 〈P,∇g(Ŵ (l))〉 {Find best doubly-stochastic matrix}

2. γ(l+1) = arg minγ∈[0,1] g
(
(1− γ)Ŵ (l) + γP(l+1)) {Line-search}

3. Ŵ (l+1) = (1− γ(l+1))Ŵ (l) + γ(l+1)P(l+1) {Convex update}
end for

I Optimal solution of line 1. is sparse
I Closed-form solution for line 2.
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Properties of the algorithm

Theorem (informal)

STL-FW converges to the optimal solution at a rate O( 1
t ) and at the end of the t-th iteration,

each node have at most t neighbors.

I Approximately minimizes an upper-bound over H

I Controls the level of sparsity
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Setup

I Datasets: MNIST and CIFAR10 (K = 10 classes)

I Models: Linear and Group Normalized LeNet

I n = 100, 1-4 classes per node

I 3 competitors: Random, D-Cliques and Exponential graph

I Di�erent level of sparsity (degree max). dmax = 2, 5, 10
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Results
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Figure: Convergence of D-SGD with STL-FW (our approach) and alternative topologies.
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Conclusion

Full paper: Le Bars, B., Bellet, A., Tommasi, M., Lavoie, E., and Kermarrec, A. (2022). Refined
convergence and topology learning for decentralized optimization with heterogeneous data

Future directions:
I Explore more general framework

I Topology learning during D-SGD: using gradient knowledge

I Topology learning in presence of adversarial nodes

I ...
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Figure: E�ect of the hyperparameter λ of STL-FW on the convergence speed of D-SGD with 100 nodes,
dmax = 10.
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